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Abstract

This research presents a fiber-based distributed plasticity finite element
formulation for conducting nonlinear analysis of composite frame structures composed of
steel wide-flange girders framing into square or rectangular concrete-filled steel tube
(CFT) beam-columns. The research focuses on the development of the CFT finite
element formulation. A comparable formulation for steel wide-flange members is
included, and the model is suitable for conducting geometrically and materially nonlinear
analysis of complete three-dimensional frame structures or subassemblies. The current
implementation includes structures subjected to monotonic proportional and
nonproportional loading; a companion research project has extended this analysis
capability to cyclic loading. This formulation is geared for conducting behavioral studies
of CFT columns, beams, or beam-columns having a wide range of geometric and material
properties for the purpose of developing interaction curves or design recommendations,
or for predicting the behavior of experiments of CFT members or composite
subassemblies. The model is also suitable for conducting second-order inelastic
advanced analysis of composite frame structures for use directly in design, or for
conducting second-order inelastic “push-over” analysis to determine the capacity of
frame structures subjected to seismic loading.

In this stiffness-based fiber element formulation, element displacement and
rotation degrees-of-freedom (DOFs) are located at the centroidal axis of each end cross

section of the beam finite element. In addition, the end cross sections are discretized into



a grid of fibers, and the constitutive behavior of each fiber is tracked explicitly during the
analysis. The steel material model is adapted from Shen et al. (1995) for both the cold-
formed square and rectangular steel tubes, with or without concrete in the tube cavity, and
for the steel-wide flange members. The steel computational model exhibits the gradual
change in modulus which is seen in heavily cold-worked steel, and the variation in
material properties and constitutive behavior between the corners and flanges of
rectangular cold-formed steel tubes is accounted for directly in the analysis. The degree
to which the steel stress-strain response is rounded may be controlled through input
parameters. This allows calibration to a variety of steel types. The current application is
intended for use primarily with ASTM A500 Grade B steel (for CFT sections) and ASTM
A36 or A572/50 steel (for wide-flange sections). Residual stresses in steel wide-flange
sections are also modeled.

The concrete material model is adapted from Chen and Buyukozturk (1985) for
inelastic analysis of CFT members with compressive concrete strengths ranging from
approximately 20 to 50 MPa, although a small number of CFT experiments with high
strength concrete ranging up to 100 MPa are available in the literature and have been
verified in this work. The model in compression includes a loading branch which has a
gradually decreasing modulus, followed by a descending branch beginning at the peak
compressive stress which extends to high strains while retaining some compressive load
carrying capacity. Calibration of the descending branch includes consideration of the
compressive strength of the concrete as well as the slenderness of the steel tube section to
account implicitly for confining action. Tension modeling includes an elastic loading
branch which extends to the cracking stress of the material, followed by an immediate
loss of load carrying capacity. Crack opening and closing is also permitted.

Slip between the steel and concrete portions of the CFT elements is accounted for
in the three-dimensional CFT beam-column element. To accomplish this, the CFT
element has separate steel and concrete translational DOFs at each end node, yielding a
total of 18 DOFs per element, to permit the connection of CFTs arbitrarily oriented in

three-dimensions. Shear deformation compatibility is insured at the element ends
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through the use of penalty functions in the global stiffness matrix; this permits slip in the
longitudinal direction of the CFT, due either to axial or flexural loading. The virtual
work equation of equilibrium is expanded to derive the low and high order geometrically
nonlinear stiffness matrices based on the 18 DOFs. A technique is also developed for
allow 12 DOF steel wide-flange beam elements to frame into 18 DOF CFT elements to
form composite frame systems. The parameters of the constitutive relation governing the
behavior of the steel/concrete slip interface are calibrated and verified versus experiments
of steel I-girders framing into CFT beam-columns using simple shear connections, and of
CFT beams in flexure (for which slip was measured). This CFT slip formulation is
capable of modeling behavior ranging from perfect bond to perfect slip, and is
particularly effective at detecting slip in the connection regions of steel I-beam-to-CFT
connections.

A general purpose structural frame analysis computer program, CFTFiber, has
been developed for implementation of this computational formulation. Using this
software, computational results are compared to experimental test results for over thirty
CFT columns, beams, and beam-columns. The computational results show excellent
agreement with published experiments for a large range of geometric and material
configurations. The experimental and computational curves match well for the entire
loading history for the verification problems. Additional verification is provided by a
comparison to a test on a composite subassembly composed of steel wide-flange beams
which frame into a CFT beam-column. In addition, the effect of slip on the load carrying
capacity and stiffness of CFT beams, columns, and beam-columns is investigated briefly.
An analysis example is presented for a full-scale planar composite frame to demonstrate

the capability of the formulation.
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Chapter 1

Introduction

This research presents the computational formulation for an eighteen degree-of-
freedom (DOF) distributed plasticity fiber-based beam finite element to model the
behavior of square and rectangular concrete-filled steel tubes (CFT) used as the primary
beam-columns in three-dimensional composite frame structures. The distributed plasticity
model, based on a beam finite element formulation, discretizes the CFT cross sections at
the beam ends into a grid of fibers, and the stress-strain behavior of each steel and
concrete fiber is tracked explicitly during the load history. In addition to providing a
thorough assessment of cross-section strength, geometrically nonlinear effects are
incorporated in this stiffness-based formulation using a corotational approach so as to
permit modeling CFT members of any length. In addition, the finite element includes six
extra DOFs to account for slip between the steel tube and concrete core which may occur
at connection regions or when CFT beams are subjected to flexure. Calibration of the slip
model is presented, and a large suite of verification problems are compared to published
experimental results of CFTs subjected to proportional and nonproportional monotonic
loading.

A fully nonlinear software program has been developed which utilizes the 18 DOF
CFT beam element. The program also implements a conventional 12 DOF beam fiber
element to model steel wide-flange members. Together, these elements may be used to
model composite frames consisting of steel I-girders framing rigidly into concrete-filled

steel tube beam-columns. The software provides the capability to simulate the behavior of
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CFTs used as beams, columns, beam-columns, or in composite frame structures. It may
also be used to conduct parametric studies of CFT members, for example to develop
parametric data suitable for use in improving current specification design provisions for
the interaction of axial force and bending moment in CFTs (AISC, 1993). The software is
also geared for conducting second order elastic or inelastic analysis of complete composite
CFT frames for behavioral analysis (such as for use in seismic push-over analysis (Lawson
et al., 1994)) or directly for design (SSRC, 1993; Hajjar et al., 1996d).

This chapter provides an overview of the published literature to date on analysis of
square or rectangular CFTs. Also presented are the objectives and scope of the current

formulation. Finally, the layout of the remaining chapters is discussed.

1.1 Background for Concrete-Filled Tube Computational Modeling

1.1.1 Overview of Experimental Research on Concrete-Filled Steel Tubes

Experimental tests on circular, square, and rectangular concrete-filled steel tubes
(CFTs) have been conducted in earnest since the 1950s. Early tests focused on
determination of the axial capacity of steel tubes which were filled with concrete or mortar
(Kl6ppel and Goder, 1957). These early tests generally used low to medium strength
concrete (Salani and Sims, 1964), and the experimental load histories were relatively
simple. More recently, experimental programs have been carried out to determine the
complete range of member strength for CFTs subjected to combined axial and flexural
loading (Gardner and Jacobson, 1967; Neogi et al., 1969; Bridge, 1976; Tomii and
Sakino, 1979a, b; Matsui and Tsuda, 1987; Prion and Boehme, 1989; Shakir-Khalil and
Zeghiche, 1989; Shakir-Khalil and Mouli, 1990; Shakir-Khalil, 1991; Matsui et al., 1993,
to name a few). These experiments have included proportional and non-proportional
loading of short, moderate, and long columns and beam-columns, giving some insight into

both the geometrically and materially nonlinear behavior of these members. In addition,




more tests are being conducted on specimens of high strength steel and concrete
composition to determine the effect of these materials on member strength and overall
behavior (Cederwall et al., 1990; Grauers, 1993; Webb, 1993). A review of much of the
experimental literature on CFT beam-columns (in contrast to their connections) published
up to 1995 may be found in Gourley et al. (1995).

Experimental research on the behavior of CFT members under cyclic loading has
been conducted by Sakino and Tomii (1981), Matsui and Kawano (1988), Kawaguchi et -
al. (1991a, b), Sugano et al. (1992), Morino et al. (1993), and Hayashi et al. (1995), to
name a few. In the past few years, research has also been initiated by Dunberry et al.
(1987), Kanatani et al. (1988), Prion and McLellan (1992), Azizinamini and Prakesh
(1993a, b), Kato et al. (1993), Shakir-Khalil (1993a, b, c; 1994b), Shakir-Khalil and
Hassan (1994a), Shakir-Khalil and Al-Rawdan (1995), Packer (1995), Ricles et al. (1995),
Alostaz and Schneider (1996), and others to determine the behavior of connections of
steel wide-flange beams to rectangular CFT columns. This research has included
investigation of the bond and slip characteristics of the steel-concrete interface at these
connections. Much of the research on CFTs under cyclic loading and CFT connections is
ongoing (Goel and Yamanouchi, 1992).

The information which has been gained through experimental research has allowed
development of building codes and design guidelines for CFTs around the world (Roik
and Bergmann, 1992). Much more information is required, however, in order to develop
comprehensive building codes which include provisions for geometrically nonlinear
behavior, high strength materials, connections, bond and slip, and accurate assessment of

strength for CFT members.



1.1.2 Overview of Computational Research on Concrete-Filled Steel Tubes

A complement to experimental testing programs is the development of analysis
software which accounts for significant geometrically and materially nonlinear behavior,
and is capable of accurate prediction of CFT behavior. The software provides the
capability to determine strength and deformation characteristics of a wide range of
member sizes and lengths. Fiber analysis has been used, for example, in the development
of the interaction equation for steel members which is included in the AISC LRFD
Specification (Kanchanalai, 1977; AISC, 1993, 1994), and for comprehensive behavioral
studies of steel frame structures (SSRC, 1993; Chen and Toma, 1994).

Several computational models for CFTs can be found in the literature. These
models generally accompany experimental research, and they provide valuable insight into
the available nonlinear material formulations for CFTs. Following is description of much
of the published research on square and rectangular CFTs which include computational

modeling.

- CFT Cross Section Models

Computational models have been proposed for studying the behavior of circular,
square, and rectangular CFT's under various loading conditions. Early models were
geared for cross section analysis in order to determine interaction surfaces for zero length
members. Grauers (1993) discussed how cross-sectional capacity may be determined
using an approach similar to that used for reinforced concrete (ACI, 1995). In this
approach, the steel tube is assumed to be plastified, and the concrete is assumed to achieve
an ultimate state in which an equivalent rectangular compressive stress block can be
defined. This assumes strain compatibility between the steel and concrete, ignores
confinement and local buckling, and is not suitable to geometrically nonlinear analysis.

Tomii and Sakino (1979b) presented a computational model for studying the
monotonic cross-section strength (moment-curvature-thrust) of rectangular CFTs. The

model is essentially a two-dimensional cross-sectional fiber element approach with



material models calibrated to a corresponding set of experimental tests. The material
models presented included a bilinear steel model with a parabolic strain hardening region
in tension only, and a multilinear concrete model which had a post-failure branch
calibrated to match the experimental test results. This model provided satisfactory
agreement with the experimental results, but did not provide the capability of analyzing
complete members or frames.

Sanz-Picon (1992) and El-Tawil et al. (1993) developed an interactive cross-
section strength software program (COSBIAN) for steel beams, reinforced-concrete
sections, and concrete-encased steel sections which was modified by Gourley and Hajjar
(1994) to analyze rectangular and circular CFTs. This software utilized similar stress-
strain curves to Tomii and Sakino (1979b), and it was used to generate a comprehensive

set of cross-section interaction diagrams in three-dimensional force space (P-M,-M,).

CFT Beam Element Models

A number of researchers have presented computational models for simulating the
behavior of CFT beam-columns, generally in two-dimensions for monotonic loading
(Bode, 1976; Bridge, 1976; Shakir-Khalil and Zeghiche 1989; Kawaguchi et al., 1991a, b;
Tsuji et al., 1991; Roik and Bergmann, 1992; Uy, 1996). Several of these approaches are
summarized below.

Chen and Chen (1973) presented a computational model for two-dimensional
planar analysis of CFT members using the Column Deflection Curve method. This
method is based upon use of an empirical cross-sectional moment-curvature relationship
which is evaluated incrementally to obtain curvatures, which in turn are integrated along
the length of the member to compute rotation for a given level of moment. The
computational results were used to develop moment-thrust interaction diagrams which
accounted for member slenderness.

Bridge (1976) briefly presented the results of a computational model for
comparison to experimental tests on square CFT beam-columns. The author presented the

nonlinear material laws used in the software, including a multilinear steel model to match



the rounded stress-strain curve of the steel observed in his steel coupon tests, and a
multilinear concrete model which compared well with a rounded uniaxial concrete stress-
strain relationship. The software did not include the capability to model post-collapse
behavior. The computational model compared well with experimentally observed lateral
deflections for individual eccentrically loaded rectangular CFT beam-columns which were
bent about one or both principal axes.

Shakir-Khalil and Zeghiche (1989) presented a planar fiber element formulation for
conducting two-dimensional analysis of rectangular CFTs, including provisions for
geometrically nonlinear behavior. In their analysis, only two degrees of freedom were
modeled at any structural node, including the rotation and the transverse deformation. In
one set of analyses, the deflected shape was assumed to be a sine wave. A second set of
analyses was also presented using a standard beam element formulation based upon the
use of cubic shape functions for modeling flexural deformations, although axial shortening
of the member was neglected. The computational models were used to predict the effect
of slenderness on the ultimate strength of individual rectangular CFT beam-columns.

Kawaguchi, et al. (1991a) presented a beam-column model for studying the cyclic
load-deformation behavior of rectangular CFT members. The model Waé similar to that of
Chen and Chen (1973), in that the moment-curvature relationship was generated for a
cross-section, and these results were integrated along the column to obtain rotations. The
model accounted for local buckling of the steel tube through an empirical stress-strain
relationship for the steel tube. This relationship included definition of the local buckling
strain for various points in the steel tube wall, depending upon the distance of the point
from the tube corner. The concrete model assumed that the stress in the post-failure
portion of the compressive concrete stress-strain curve was equal to the peak compressive
stress, to account for confinement. The model was able to match the peak stress under
cyclic loading for a set of experimental tests, but was not as accurate in predicting the
shape of the load-deformation curve.

Gourley and Hajjar (1994) developed and calibrated a concentrated plasticity

(macro) model for three-dimensional square and rectangular CFTs (Hajjar and Gourley,



1996a; Hajjar et al., 1996b, c, d). In this formulation, the materially nonlinear behavior
was based on a bounding surface model, which included the use of two nested surfaces, an
inner loading surface and an outer bounding surface, in three-dimensional force space.
The material nonlinearity was concentrated in plastic hinges of zero length at the member
ends. The shape and hardening properties of the loading surfaces in the plasticity model
require direct calibration, and the calibration accounts implicitly for such effects as
stiffness and strength degradation, a vanishing zone of linear elastic behavior, confinement
of the concrete core by the steel tube, and local buckling of the steel tube. This
formulation is compact and efficient, especially for analysis of complete composite frames,
but it is less suitable for comprehensive analysis of individual CFTs and composite
subassemblies since it lacks the capability to simulate the spread of plasticity through CFT
elements. A comparable steel wide-flange element was implemented, and a computer
program, CFTMacro was presented which performs static and transient dynamic analysis
of three-dimensional composite frames using the concentrated plasticity approach. A set
of experiments was chosen for calibration and verification that represent a wide range of
material and geometric parameters. The computational results match experimental tests
for both static and cyclic tests of individual CFTs and of composite subassemblies. The
work by Gourley and Hajjar (1994) on analysis of rectangular CFT's directly [Srecedes the
current work as part of an ongoing research program at the University of Minnesota. The
software developed by Gourley formed the framework for the spread of plasticity analysis
software in the current computational model.

Several researchers have conducted analyses of CFT's using three-dimensional
continuum analysis, usually in conjunction with presenting experimental results of CFT
connections (e.g., Ge and Usami (1992), and Azizinamini and Prakash (1993a, b), Alostaz
and Schneider (1996), to name a few). For example, Shakir-Khalil and Al-Rawdan (1996)
presented the results of finite element analysis of a rectangular CFT column in the region
around a simple steel beam-to-column connection using the finite element software
package ABAQUS. The analysis used plate elements for the steel tube walls and brick

elements for the concrete core. Contact elements were used between the steel and



concrete to study the effect of connection eccentricity on rotation and distortion of the
gusset plate and connection zone. This analysis was not intended to study the load-
deformation characteristics of CFTs, but rather to investigate the localized effects around
connections which did not penetrate the concrete core. The finite element analysis
showed extreme distortion of the steel tube walls in the localized region around the
connection plate. This behavior has been observed by Shakir-Khalil (1993c, 1994b) and
also by Dunberry et al. (1987) in experimental CFT connection tests. Finite element
analysis of this sort is computationally expensive and prohibits investigation of complete

structural frames or subassemblies.

1.1.3 Comparison of Existing Models to the Current Computational Formulation

The fiber-based finite element formulation developed in the current research
provides an alternative to both concentrated plasticity and continuum element
formulations. The fiber element approach uses a discretization scheme to model the
gradual plastification of the element ends. This plastification is based on appropriate
constitutive models for the steel and concrete rather than on an empirical calibration of the
load-deformation behavior of the member, as a concentrated plasticity model uses. By
using numerical integration through the cross section and interpolation along the element
length, the spread of plasticity in the elements can be tracked with a high degree of
accuracy. The fiber element approach also provides computational efficiency when
compared to continuum finite element analysis. The current formulation is suitable for
studying individual CFT members, composite subassemblies, or entire three-dimensional
composite frame structures.

The current computational formulation can be extended to new material types
(high strength concrete, or polymer-based composite wraps in lieu of steel tubes, for
example) through calibration of the constitutive models, or development of new
constitutive models. An additional advantage of the current formulation is the inclusion of

slip between the steel and concrete. The macro model formulation is not capable of



accounting for slip, as the ability to track separate material rigidities in the steel and
concrete, and of modeling partially plastified element properties, are required for this
purpose. The current formulation can also directly model residual stresses in the steel, and

variation of nominal material properties through the steel cross section.

1.2 Research Objectives

This work presents a portion of an ongoing computational research program at the
University of Minnesota which aims to develop comprehensive formulations for predicting
the monotonic and cyclic behavior of square and rectangular CFTs as members of braced
or unbraced structural frames comprised of steel wide-flange beams framing into CFT
beam-columns. Included in this research is analysis of individual CFT beam-columns,
subassemblies of composite frame systems, and complete building structures in order to
further the understanding of the behavior of CFTs. In addition, these formulations are
suitable for providing a comprehensive assessment of the strength and stability of these
types of systems, and are geared for providing the data necessary for enhancing
specifications for the design of frames and connections which include CFT members.

The primary objective of the current research thus focuses on the development,
calibration, and verification of a fiber-based beam-column finite element for nonlinear
analysis of square and rectangular CFTs subjected to monotonic loading. A second
objective of the current research is to study the effect of slip between the steel tube and
the concrete core in square or rectangular CFTs. Many researchers have commented on
the need to better understand how slip affects the overall behavior of CFTs, especially in
connection regions (Bridge, 1976; Shakir-Khalil, 1993a, b). Thus, to account for slip, the
fiber-based beam finite element presented in this work is based on an 18 degree-of-
freedom element which allows slip at the interface between the steel and concrete of a
CFT member. This element provides the capability to study the effect of slip at

connections and along the length of elements, and to determine whether slip is detrimental




to the strength, stiffness, or ductility of these members. Experimental literature is utilized
to determine the stiffness and strength of the nonlinear slip interface.

The computational model formulated in the current research accounts
comprehensively for much of the significant geometrically and materially nonlinear
behavior of CFTs. Details of the material constitutive model are presented in Molodan
and Hajjar (1997) and Hajjar et al. (1996e, f), and are outlined only briefly in this work. In
addition to CFT fiber elements, steel wide-flange sections are included in the current
analytical model. The steel wide-flange beam fiber element is based on the work of White
(1986), although the current research implements a different steel constitutive model.
Inclusion of the steel wide-flange beam finite element allows modeling of complete
composite frames with distributed plasticity in both the CFT's and the steel members.
While the present work is limited to monotonic proportional or non-proportional loading
(with elastic unloading permitted), related work by Molodan and Hajjar (1997) extends

this research to cyclic analysis.

1.3 Scope of Research

The scope of the current research is outlined in this section. It includes a summary
of several of the key assumptions made in the nonlinear formulation, as well as a
description of the range 6f CFT parameters for which the CFT calibration is appropriate.

The low and high order geometrically nonlinear stiffness matrices are derived for
the 18 DOF CFT finite element through expansion of the nonlinear terms of the virtual
work equation of equilibrium. The stiffness-based, corotational formulation is similar to
those presented by White (1986), Clarke (1992), Morales (1994), and Yang and Kuo
(1994). The elastic stiffness matrix for a related composite beam element with slip at the
steel-concrete interface was presented by Amadio and Fragiacomo (1993), however,
inclusion of the geometrically nonlinear stiffness terms and material nonlinearity were not

included in this publication. Although advances in composite beam computational
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modeling have included semi-rigid connections and materially nonlinear behavior for
beams with slip at the steel-concrete interface (Aribert, 1995), a geometrically nonlinear
formulation for these types of members has not been published.

A geometrically nonlinear force recovery procedure is adapted from Morales
(1994) which accounts for high order terms contributing to the geometrically nonlinear
behavior. In addition, a quadratic shape function is adopted for axial deformation in order
to more accurately describe the axial behavior of a partially plastified element.

Material nonlinear models which are applicable to proportional and
nonproportional monotonic loading are presented for both steel and concrete; the loading
may also include strain reversals. A bounding surface plasticity model based on Shen
(1993) and Shen et al. (1995) is adopted to model the behavior of the steel fibers in the
CFT (Hajjar et al., 1996e, f; Molodan and Hajjar, 1997). A main feature of this
formulation is the ability to model the rounding of the stress-strain curve for steel which
has been observed experimentally for cold-formed steel tubing (Sully and Hancock, 1994),
which is the most common type of tubing used in the United States. The shape of the
steel stress-strain curve can be controlled in the analysis through a number of input
parameters. These parameters have been calibrated by Molodan and Hajjar (1997) for
material similar to ASTM A500 grade B cold-formed rectangular steel tubing. In
addition, separate steel properties may be assigned to the corners and the flange regions of
the steel tube sections, with a continuous variation of properties around the perimeter of
the tube. This modeling also accounts for the residual strains which result from the cold-
forming process of the tube.

The compressive concrete stress-strain model is adapted from Chen and
Buyukozturk (1985), Buyukozturk and Ameur-Moussa (1988), and Ameur-Moussa and
Buyukozturk (1990). Like the steel formulation, this model is also a bounding surface
plasticity formulation, with a failure surface that defines the initiation of compressive
failure. The size of the failure surface is a function of an accumulated damage parameter
which increases with compressive loading, especially in the post-peak region of the stress-

strain curve. The parameters and calibrated equations which determine the accumulation
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of damage have been extended significantly from the scope of the published results from
the original papers. Molodan and Hajjar (1997) presents a full description of the
adaptation of the compressive concrete model for use in the current application. A tensile
concrete model is also impleﬁented which accounts for elastic tensile loading and cracking
(ASCE, 1982). Crack opening and closing on strain reversal are modeled in this
formulation. The concrete model is currently calibrated and verified for concrete strengths
ranging from 20-50 MPa, although a small number of experimental comparisons are
included in this work for members having concrete strengths of 100 MPa.

As mentioned previously, the current work considers only proportional and non-
proportional monotonic loading. Single strain reversals are expected under these loading
conditions, however. The material models used in the current formulation include full
capability to model strain reversals in tension and compression. These models are
extended to include cyclic capability by Molodan and Hajjar (1997).

Several simplifying assumptions are required in the development of the CFT fiber

element in order to limit the scope of the current research.

1. Plane sections that are initially plane and perpendicular to the centroidal axis are
assumed to remain so (Euler-Bernoulli beam theory is assumed).

2. Torsional deformations are based on the initial elastic torsional rigidity of the element
(i.e., material nonlinearity due to torsion is neglected). In addition, shear deformations
associated with beam flexure are neglected.

3. The geometrically nonlinear terms associated with the bowing effect are neglected in
the current formulation.

4. Flexural-torsional and lateral-torsional buckling are not detected by the current model,
as these buckling modes are rare in CFTs.

5. Analysis is not continued beyond the limit point of the structure.

There are several local material phenomena which are not included in the current

computational formulation. Many researchers have commented on the effect of
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confinement in square and rectangular CFTs. It is generally agreed that these members
provide little confining stress to the concrete core (Council on Tall Buildings and Urban
Habitat, 1979). The ductility of the concrete is markedly improved, however (Chen and
Chen, 1973). In the current formulation, concrete confinement is modeled approximately
through modification of the compressive unloading slope of the concrete stress-strain
curve (Hajjar et al., 1996e; Molodan and Hajjar, 1997). A similar approach was used by
Tomii and Sakino (1979b) to account for confinement ih cross-sectional analysis of square
CFTs. The material models used in the current analysis are, however, multiaxial
formulations which have been implemented here (with only uniaxial stress-strain behavior
being activated) so as to permit extension of the CFT finite element model to future work
which accounts directly for the effects of confinement.

A second effect which is not modeled directly is local buckling of the steel tube.
Although the concrete core delays the onset of local buckling, many experimentalists have
observed local buckling during testing of rectangular CFTs. This behavior often
accompanies plastification of the steel tube at or near the limiting strength of the member.
As the current formulation is intended only for pre-collapse analysis of composite frames,
assuming no substantial change in behavior due to local buckling is adequate for the

current application.

1.4 Organization of Report

Chapter 2 presents the finite element formulation for the 18 DOF beam finite
element which is used to model CFTs in the current analysis. A virtual work formulation
is employed which takes advantage of corotational kinematics to describe element
deformations. The derivation of the low and high order geometrically nonlinear stiffness
and force recovery terms is presented. Issues related to implementation of the 18 DOF
element in a structural analysis computer code are also presented. Finally, the materially

and geometrically nonlinear incremental solution procedure is presented.
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Chapter 3 presents the calibration of the nonlinear slip model which is implemented
in the current analysis. Experimental tests on rectangular CFT columns and connections
are used to calibrate the strength and stiffness of the slip interface. Comparisons to
experimental connection tests and beam tests demonstrate the capability of the slip model.

Chapter 4 outlines the nonlinear material models used for the CFT and steel wide-
flange elements. Material behavior which is specifically important for square or
rectangular CFT's (such as varying material properties caused by cold-forming) is
discussed. A detailed description of the nonlinear material models is beyond the scope of
this work, but may be found in Molodan and Hajjar (1997).

Chapter 5 presents comparisons of analyses which utilize the 18 DOF CFT beam
element to experiments of square and rectangular CFT beams, columns, beam-columns,
and subassemblies under proportional and non-proportional monotonic loading. A final
example consisting of a multistory planar composite frame with steel wide-flange beams
framing rigidly into CFT columns is analyzed to demonstrate the capabilities of the current
finite element formulation. The geometrically and materially nonlinear behavior of the
frame is described, as well as the slip which is observed for this example problem. The
effect of slip on the strength and deformation of the frame is discussed.

Chapter 6 presents a summary discussion of the current computational model,

particularly the accuracy of the analysis as compared to experiments of square and

rectangular CFTs. General observations are made about the behavior of the 18 DQF beam

finite element, the effect of slip in CFTs on overall frame behavior, and implications for

structural design, building codes, and future research.
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Chapter 2

Finite Element Formulation Including Interlayer Slip

Conventional beam finite elements for analysis of frame structures have typically
been formulated with 3 translational and 3 rotational degrees-of-freedom (DOFs) at each
end for a total of 12 DOFs per element. The occurrence of slip between the steel and
concrete portions of a CFT beam-column requires additional DOF's in order to properly
model the differential movement between these materials in space. To accommodate this
movement, the current formulation adds three additional translational DOFs to each end
of a 12 DOF beam finite element. These additional DOFs allow the steel and concrete
independent axial deformations while retaining rotational and shear deformation
compatibility. The shear deformation compatibility is ensured through the use of penalty
functions in the global stiffness matrix (Zienkiewicz, 1977; Bathe, 1982).

In this chapter, a stiffness-based 18 DOF beam finite element is developed for
geometrically and materially nonlinear analysis of CFT members. The low and high
order geometric stiffness matrices for an 18 DOF element with interlayer slip are derived
through expansion of the virtual work equation of equilibrium. An updated Lagrangian
(UL) incremental formulation is employed for recovery of element strains (Bathe, 1982).
The fiber element method is employed to model the spread of material nonlinearity
through the element cross section. Shape functions are used to describe the change in
stiffness along the element length for an element which is partially plastified (White,
1986).
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Chapter 2 is structured as follows. Section 2.1 presents the derivation of the 18
DOF geometrically linear and nonlinear stiffness matrices. Section 2.2 presents issues
related to the implementation of the 18 DOF element in a three-dimensional frame
structure composed of both 18 DOF elements and conventional 12 DOF elements, and
issues related to the use of penalty functions in the global stiffness matrix. Section 2.3
discusses the recovery of incremental element strains from incremental global
displacements, and the procedure for materially nonlinear analysis. Finally, Section 2.4
presents the global iterative solution strategy which is developed for the analysis of space
frames composed of both 12 and 18 DOF elements with geometrically and materially

nonlinear behavior.

2.1 Derivation of Element Stiffness Matrices

This section presents the derivation of the linear elastic stiffness matrix as well as
the low and high order geometric stiffness matrices for the 18 DOF beam finite element.
The model for slip between the steel and concrete is adapted from the composite beam
finite element presented by Amadio and Fragiacomo (1993). The element stiffness
matrices are derived by expanding the virtual work equation of equilibrium following

Bathe (1982), White (1986), and Yang and Kuo (1994).
2.1.1 The Virtual Work Equation of Equilibrium

The virtual work equation of equilibrium for a structural element has been

presented by Bathe (1982):

[2t8,.e,%dV = [*1,8,u,%dS + [ 2£,8,u,%aV 2.1)
ZS 2V

Y
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where: *V is the volume of the element in configuration C2
2S is the surface of the element in configuration C2

’1 ; 18 the Cauchy stress tensor measured in configuration C2

»€; 18 the engineering strain tensor measured with respect to

configuration C2

, u; are the element deformations measured with respect to
configuration C2

21, are the surface tractions in configuration C2

> f, are the body forces in configuration C2

Following the notation of Bathe (1982), left superscripts denote the configuration
in which a quantity is measured, and left subscripts denote a reference state. In this work,
the unknown state (or current configuration) will be referred to as configuration C2, the
most recent converged state (or reference configuration) will be referred to as
configuration C1, and the initial undeformed state will be referred to as configuration CO.

Equation 2.1 is valid for any combination of applied tractions and resultant
stresses. This equation expresses the equilibrium for an arbitrary element volume, where
the left side of the equation represents the virtual strain energy of the element and the right
side of the equation represents the external work done by surface tractions and body
forces acting through a virtual displacement (Bathe, 1982; Yang and Kuo, 1994). In the
current work, body forces are neglected; therefore the second integral on the right hand
side will be omitted hereafter.

The principle of virtual work has the advantage of being applicable to path-
dependent material and loading. In addition, geometrically nonlinear effects can be easily
considered through inclusion of the nonlinear strain components of the virtual work

equation of equilibrium, as will be shown in the following sections (Yang and Kuo, 1994).
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2.1.2 Addition of Strain Energy Due to Slip

Amadio and Fragiacomo (1993) presented a two-dimensional layered composite
beam element to model the slip between an elastic steel beam and concrete modeled as a
viscoelastic material to capture creep and shrinkage. This model proved accurate for
determining the monotonic load-deflection behavior of composite beams. This model is
adapted to simulate the slip which occurs between the steel tube and concrete core of a
CFT beam-column due to beam shear and axial load transfer at connections (see also
Chapter 3). In addition, geometric and material nonlinear capability is added to the
Amadio and Fragiacomo model by expanding the nonlinear terms of the virtual work
equation of equilibrium. This model has been further extended to cyclic analysis of CFTs
by Molodan and Hajjar (1997).

For the purposes of deriving a beam-column stiffness matrix, the steel and concrete
volumes are separated in the virtual work equation of equilibrium. The steel and concrete
are assumed to be separated by a layer of nonlinear springs which determine the load
transfer between the two materials based on a spring stiffness. The virtual work equation
of equilibrium (Eq. 2.1) must therefore be modified to include the strain energy associated
with the deformation of the layer of springs. Equation 2.2 presents the virtual work
equation of equilibrium with the steel and concrete portions as separate integrals and the
strain energy of the slip layer included as a new term on the left hand side of the equation.
In this equation, a right superscript ¢ denotes concrete and a right superscript s denotes

steel.

[2rs8,e5%ave + [2138,ep%aV" + [ *n 8, y’dl =
Zvc 2Vs 21
_[ 2808, u 2S¢ + j 2t8,u; 2dS"

2sc 2Sx

(2.2)

where: 21 is the steel-concrete interface in C2 (units of length?)
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0 is the force transferred between the steel and concrete portions of the
element through the slip layer per unit area of the interface (units of
force/length?)

, ¥ is the slip between the steel and the concrete at a point along the

element length (units of length)

2.1.3 Updated Lagrangian Incremental Formulation

The updated Lagrangian (UL) incremental formulation is adopted for the current
work in order to account for significant geometric nonlinear behavior and path-dependent
material behavior. This formulation follows the work of White (1986) and Yang and Kuo
(1994). The UL formulation employs the second Piola- Kirchhoff (PK2) stress and
Green-Lagrange (GL) strain (Bathe, 1982). Unlike Cauchy stress and infinitesimal strain
which are measured with respect to an axis fixed in space, PK2 stress and GL strain are
measured with respect to a local coordinate system which moves with the rigid body
motion of the element (White, 1986).

Using PK2 stress and GL strain, a virtual displacement relationship can be
developed which references the known configuration, and which is accurate for problems
involving moderate rigid body rotations and small incremental strains. Expressing Eq. 2.2
in terms of PK?2 stress and GL strain, and assuming small incremental strains (and
therefore a small volume change between the reference configuration, C1, and the current

configuration, C2), Eq. 2.3 can be derived (Yang and Kuo, 1994).

)

[1858,e5 ave + [ 1578,€5'dV* + [ *m 8, y'dl =
lve IVA' 11
j 2158,u7'dS’ + j *t58,u; 'dS*

1sc ls.\'

(2.3)

where: 12S,.j is the PK?2 stress measured at C2 with respect to C1
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1€; 1s the GL strain measured with respect to C1

Using an incremental approach, White (1986) and Yang and Kuo (1994) show that
the PK2 stress can be assumed to be equivalent to the Cauchy stress at C1 plus the
increment in PK2 stress from C1 to C2. In addition, the incremental PK?2 stress terms can
be replaced in the virtual work equation of equilibrium by considering the constitutive
relationship between PK2 stress and GL strain. Bathe notes that the constitutive tensor
developed for Cauchy stress and engineering strain can be used to represent the
constitutive relationship between PK2 stress and GL strain. Also, because of the
invariance of PK2 stress and GL strain under rigid body motions, "the use of the relation
... is completely equivalent to using Hooke's Law in infinitesimal displacement conditions"

(Bathe, 1982). Equation 2.4 shows these relationships:

fSij =ITi,- +AS,; =1fc,.j +, Gy A€ (2.4)

where: A represents the change over the increment C1 to C2

1 Gy 18 the material constitutive tensor in configuration C1

Equation 2.5 shows how the GL strain is conventionally separated into linear and
nonlinear terms. This separation aids in the expansion of the virtual work equation of

equilibrium because the higher order terms are more readily identifiable:

1€5=18; 1My . (2.5)
where: | e; are the linear GL strain terms (equivalent to the infinitesimal strain)

;M; are the nonlinear GL strain terms

By employing the simplifying relations described above, the incremental form of
the virtual work equation of equilibrium with separate steel and concrete volumes can be

written as follows (White, 1986):
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IIC;k,Ae,f,Sle;. ave + III;SInBIdVC +

v v

[1Crutegdmy'ave + [ Coamgdmg'ave + [, Coyangs es'dve +

v 24 v

[1Crutedie;'avs + ['x38.m; v + (2.6)
y v

_[1C;k1Aelf15m; ave + J‘IC;kIAn;ISIn; v’ + IlC;szn;ISW; 'dave +

y v y

[An 8, y'dr = AR
U

where: AR is the incremental applied load such that:

AR = [*178,u7'dSe + [1;5,u7'dS” -
IS.\'

lsc
IITZ.SIe,.J‘. ave - Ilrzﬁleglst - Iln S widl
i

Iy y

*n='n + An (see Section 2.1.5)

Yang and Kuo (1994) suggest, for a 12 DOF element, that an approximate
geometrically nonlinear solution can be obtained by considering only the first, second,
sixth and seventh integrals on the left hand side of Eq. 2.6, since the remaining terms
represent products of strain increments, which are assumed to be small. The resulting
equation is linear in the displacements and can be expanded to obtain linear elastic and
geometrically nonlinear tangent stiffness matrices.

Morales (1994) suggests a method for considering all of the nonlinear terms in the
force recovery except those associated with the bowing effect (elongation of the
centroidal axis due to flexural bowing). This method recognizes that the third and fourth
integrals on the left hand side of Eq. 2.6 can be approximated as the increment in concrete
stress over the load increment. The same simplification is made for the incremental steel
stresses associated with the eighth and ninth integrals. A strategy for updating the

element geometric stiffness during incremental force recovery to include these terms is
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also presented by Morales (1994). This scheme will be adopted in order to include in the
force recovery the higher order geometric stiffness terms of the virtual work equation of
equilibrium associated with the incremental stresses (see Section 2.3.1). Equation 2.7
gives the form of the virtual work equation of equilibrium used in this work to derive the
CFT element linear elastic and geometrically nonlinear tangent stiffness matrices, as well
as the nonlinear terms used only during force recovery. The third and sixth terms are
derived from terms which are nonlinear in the displacements, and they are a function of
the stress increment during the current increment; consequently they ére not used to form
the tangent stiffness matrix at the beginning of an increment. However, they will be
included in element force recovery (see Section 2.3.1) using the technique presented by

Morales (1994).

jlc;klAezlsle; ave + _[172'6111; dve + J.A‘C;ﬁln;. tave +

y ly Iy ‘
J‘IC;"IcIAe}L&le,; ave + Il’c;B]n; dave + J‘A‘t;ﬁln; ‘avs + 2.7)
Iy % 1y

[an 8 y'dl = A%
'

where: AT;. is the increment in the concrete stress tensor from C1 to C2

AT;. is the increment in the steel stress tensor from C1 to C2

Equation 2.7 neglects elongation of the element centroid due to bowing (i.e., integrals
five and ten in Eq. 2.6 are thus neglected in both the element stiffness and the force

recovery formulations of this work).
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2.1.4 Corotational Reference Axes

Thus far, the virtual work equation of equilibrium has been written in terms of
stresses and strains. The stiffness of structural elements, however is generally formulated
in terms of force and deformation with respect to a reference axis. A corotational
formulation is adopted in the present work which is consistent with the updated
Lagrangian incremental formulation. A description of this approach is provided by

Stolarski et al. (1995):

In this approach the deforming body (or a part of it, like a finite element or particle's
neighborhood) is observed from the point of view of a frame which 'closely' follows the
body (its part), or, in other words, 'corotates' with it. Displacements relative to that

corotating frame, termed deformational, are clearly the only ones affecting strains.

Numerous references are given by Stolarski which support the use of this approach for a
variety of structural finite elements.

The specific corotational, or natural, axes for the CFT beam-column are shown in
Fig. 2.1. The local x-axis connects the geometric center of the i and j ends of the
member, and the local y and z-axes define the major and minor principal axes of the cross

section at the i end of the member.

AT N
d p
! Z
! N N
| 7 z
I/ J *
"z s cross-section

i-end j-end

Figure 2.1: Element Corotational Axes at Configuration C1
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For the current 18 DOF beam-column element, the steel and concrete nodes both
lie upon the centroidal axis of the member, but need not coincide with each other at either
end of the member. The corotational axes are assumed to coincide with the steel nodes of
the 18 DOF finite element at the beginning of each load increment.

Assuming that cross sections which are plane and normal to the centroidal axis at
the beginning of analysis remain plane and normal during deformation, the deformation
of the point p in Fig. 2.1 can be completely described by the deformation of the centroidal
axis of the member. In addition, the shear strains are assumed to be equal to zero, thus
the tensor notation of the equations used in the previous sections can be reduced to the
uniaxial component. Equation 2.8 gives the simplified relationship for the three
dimensional element of Fig. 2.1, where the incremental deformation of the centroidal axis
is given by (Au,,Av,,Aw,) and the incremental deformation of any point p is given by
(Au,Av,Aw) (Yang and Kuo, 1994). Positive (Au,Av, Aw) is in the direction of the

corotational axes, with positive rotations shown in Fig. 2.4 of Section 2.1.8.

Au® = Au; — yAv,'-zAw,’
Au’ = Au] — yAv,'—zAw,'
Av=Av, —zAD,
Aw=Aw, + yAB,

(2.8)

where: ' denotes differentiation with respect to x
AB, is the incremental torsional rotation of the element

(x, y, z) define a point in the cross section

Using derivatives of Eq. 2.8, the incremental axial strain ( Ae,, ) and the
incremental shear strains (Ae,, and Ae,,) at any point in the element volume can be

formulated in terms of the incremental deformations of the centroidal axis and the

position in the element. Equation 2.9 presents the incremental element axial strains
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(Yang and Kuo, 1994). In this work, the incremental shear strains are assumed to be zero

throughout the analysis (White, 1986).

Ael, = Au'’ = Au'S—yAv,""—zAw "

[

. , (2.9)
Aey = Au'" = Au',—yAv,'"'—zAw "

2.1.5 Slip Layer Kinematics

The current analytical formulation is intended to model the behavior of CFT
beam-columns in which the two materials are allowed to slip along the centroidal axis
with respect to each other. This type of formulation has been applied to composite beams
composed of a steel girder and a concrete deck which are connected by a line of shear
connectors. Kinematic models have been proposed which account for both the
deformation of the connectors and the time dependent characteristics of the concrete
(Bradford and Gilbert, 1992; Amadio and Fragiacomo, 1993; Aribert, 1995). These
models have been shown to be accurate for modeling the time-dependent behavior of
composite beams, and are also accurate for modeling the stiffness of a composite member
if the material characteristics are time-independent (Al-Amery and Roberts, 1990). The
current model assumes that the behavior of the materials is time-independent.

CFTs present a special case of the above mentioned models in two ways: First,
the centroidal axes of the steel tube and the concrete core coincide in the initial state (CO)
of the beam. Slip is therefore not induced due to flexure until the section becomes non-
symmetric. The non-symmetry is caused by plastification of the steel and concrete, and
also by cracking of the concrete in tension. Lu and Kennedy (1994) noted slip during
pure flexure tests of rectangular CFTs, indicating that such behavior is probable in these
members. Second, the slip interface of a CFT is a continuous surface which, for this
work, relies on friction and bond for the transfer of forces (Shakir-Khalil, 1993a), rather

than a line of shear connectors (as a composite beam might have). The stress-strain
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characteristics of the slip interface for a rectangular CFT must therefore be examined to
determine this relationship (see Chapter 3).

The kinematic relationships for a CFT beam-column with interlayer siip are based
on a number of assumptions. The steel and concrete layers are assumed to be separated
by a layer of nonlinear slip springs which allow the steel and concrete to exchange load
based upon the stress-strain characteristics of the springs. However, since the concrete is
encased within the steel, the two materials must take on the same shape for transverse
displacement and rotation. Section 2.2 shows how penalty functions are used in the
global stiffness matrix to impose the necessary shear constraints. The rotational
constraints are imposed during expansion from corotational stiffness to element stiffness
(see Appendix A).

The proposed slip model is shown in Fig. 2.2. As pfeviously mentioned, the two
materials are assumed to take on the same transverse displacement, and therefore slip
stress is only caused by differential axial strain between the steel and concrete layers.
This differential axial strain can be computed directly by considering the interpolation
functions for axial displacement of the two materials (see Eq. 2.17). Since the geometric
centers of the two materials coincide, the same corotational axes can be used for both
materials.

k

Vok7viiiizzzzzzzzzz::

V. 2z Z .. )

[

Figure 2.2: Finite Element Slip Model
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The incremental deformation in the spring layer, Ay, is thus given by:

Ay = Au — Au (2.10)

Equation 2.11 gives the equilibrium equation used to relate the incremental load transfer
between the two materials per area of interface, An, and the incremental deformation of
the spring layer, Ay (Amadio and Fragiacomo, 1993). The stress in the slip layer is
written in an incremental form which is similar to the incremental form of the material

stress-strain relationship of Eq. 2.4.

2n="n + An="m + kAy 2.1D)

where: k is the tangent stiffness of the interface (units of force/length?)

The incremental linearization of the relationship allows the slip interface stiffness,

k , to be updated at the beginning of each global load increment. The nonlinear slip

interface stiffness is thus assumed to be incrementally linear in the current formulation.
2.1.6 The Virtual Work Equation of Equilibrium in Expanded Form

The virtual work equation of equilibrium (Eq. 2.7) can be expanded by
substitution of the expressions for strain developed in previous sections. The expanded
form of the equation takes advantage of the simplifications which have been presented, in
particular the assumption that the shear stresses and strains are zero. Equation 2.12 gives
the notation that is used to represent the uniaxial components of stress and strain, as well
as the simplified stress-strain constitutive tensor, which can now be represented by a
scalar. The nonlinear term of the GL strain is also presented in expanded form (Bathe,

1982; White, 1986).
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Ang = Anp, = % KAM'S)Z + (Av”‘)2 + (Aw"')z] (2.12)
&My =0, M5, = Au'S U +AV S V' + AW S W'
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These relationships are substituted into the virtual work equation of equilibrium

(Eq. 2.7) resulting in the following form of the equation:

I1EC(Au'z—yAvC"—zch")(Slu'ﬁ—ySva"—zélwc”)1dV” +
y

[ 170 (Au 8,0 +AVS v+ AWS W YV +
ly

[ AT (A8, +AV'S v+ AWS, W YdV© +

v

[V B> (A =yAy,=zhw, " (3 =y, v, =28, w," JdV " + (2.13)
ly

[ (A8, +AVS v+ AWS W Y dV " +

y

JATe (A 8,u” +AVS V' +AWS, W dV* +
ly

[(Au; — Aug)(®,u} -8,u8)'dl = AR
U

The first and fourth integrals of Eq. 2.13 are conventionally referred to as the
small displacements terms, whereas the second and fifth integrals are the geometric
terms. A further distinction is made between low and high-order geometric stiffness

terms, with the product of the rotations (Av'd,v'+Aw'd,w') comprising the low-order
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terms, and the product of the axial strains (Au'd,u') comprising the high-order terms.
This distinction is the result of the assumption of small incremental strains asserted in
Section 2.1.3. The third and sixth integrals represent the increment in the geometric
terms, and are used in force recovery as shown in Section 2.3. The seventh term is
associated with slip between the steel and concrete portions of the element and is
considered to be part of the small displacements terms. Further algebraic manipulation of
the integrals includes expansion of the geometric terms using the first derivatives of the
transverse displacements (which can be computed from Eq. 2.8), and expansion of the
expressions in parentheses. Equation 2.14 shows the expanded form of Eq. 2.13. An
excellent example of the expansion of the virtual work equation of equilibrium to element
stiffness matrices is given in White (1986).
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2.1.7 The Fiber Element Approach for Modeling Spread of Plasticity

In order to evaluate the volume integrals of Eq. 2.14, the fiber element approach is
used in this work. This scheme discretizes the element end cross sections into a grid of
fibers, and the stress-strain behavior of each steel or concrete fiber is monitored explicitly
during the loading history. Frame elements are modeled as line beam-column elements
with their DOF's located at the centroidal axis at each element end. The cross-sectional
rigidity and stress-resultants of each element end are obtained using numerical integration
over all the fibers. Fiber elements have been used to model steel wide-flange sections in
planar frames (White, 1986; Morales, 1994; Challa and Hall, 1994), reinforced concrete
sections (Taucer, et al., 1991; Izzuddin, et al., 1993), and steel reinforced concrete
sections (Elnashai and Elghazouli, 1993; El-Tawil et al., 1993; El-Tawil and Deierlein,
1996), to name a few. Fiber element models have also been used to investigate the
behavior of CFTs by several researchers (see Chapter 1). The main advantage in using
fiber elements is that computing time is greatly reduced when compared to using three-
dimensional continuum finite elements. Since each fiber is only allowed to deform along
the centroidal axis of the member, the number of computations can be reduced by one or
more orders of magnitude over a similar array of continuum elements.

The fiber element formulation is a cross section integration technique, and does
not involve fibers as such. The cross-sectional area at each of the two ends of a beam-
column is discretized into a mesh of fibers, with each fiber of the mesh having a specified
area and position with respect to the local element axis (Figure 2.3). The mesh need not
be the same at the two ends of the element, as the fibers are never considered to have a
real length. The state of stress and strain is updated for each increment in load at every
fiber. Using numerical integration (summation of individual fiber properties over the
cross-sectional area), stress-resultant forces and rigidity terms are calculated at the end
cross sections of each element. Finite element interpolation functions are then used to

describe the variation of the forces and rigidities over the length of the element. Using
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approach, the spread of plasticity through a beam-column element can be accounted for

with a high degree of accuracy.

O 7 =\
mas . o o e ]
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Figure 2.3: Fiber Element Discretization

To approximate the volume integrals which appear in the virtual work equation of
equilibrium using the fiber element method, each volume integral of Eq. 2.14 is first
decomposed into area and length integrals. The area integrals are then approximated by
numerical integration over the fibers of each cross section. Equation 2.15 shows how
numerical integration over all fibers, f, is used to approximate various area integrals.

As will be seen in Chapter 3, since there are only a limited number of appropriate

experiments documented thoroughly in the literature to which to calibrate slip stiffness,

the calibration of the value of k in the final term of the left hand column is kept simple. In

this work, its value varies as an inverse function of the perimeter of the tube, such that
k= k/p , where k is a calibrated value of slip stiffness per unit length of interface, having

units of force/length’. Thus, in Chapter 3, the value of k is calibrated directly.

By evaluating the area integrals during incremental analysis after updating the
tangent modulus of each fiber in the cross section, the spread of plasticity through the
cross section is accounted for. The tangent modulus of individual fibers is computed
based on the appropriate material constitutive models (see Chapter 4) and the fiber strain,
which is computed from the local element deformations (see Section 2.3.2).

Note that the rigidity term associated with torque and the stress-resultant torque
are not calculated through numerical integration. This is because the element formulation
does not account directly for shear strains. The torsional rigidity is simplified in this

work by assuming that the initial rigidity of the member does not changé over the entire
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load history. This approximation is believed to be sufficient for modeling the behavior of

rectangular CFTs as members of structural frames, as these members exhibit high torsional

rigidity (Kitada and Nakai, 1991).
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Once numerical integration is used to compute the element forces and rigidity at

the end nodes, shape functions are used to approximate the change in rigidity and force

along the element length. The shape functions chosen for the element forces must satisfy
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equilibrium and compatibility conditions. Traditionally, a constant shape function is

chosen to describe the axial force in an element in order to satisfy static equilibrium of the

element. However, because the element is divided into separate steel and concrete
volumes which may exchange axial load along the element length, a linear shape function
is used for axial force in this work. This shape function is exact for the case of elastic
material behavior, including a linear slip relation, but becomes an approximation once the
end cross sections become partially plastified. By choosing a linearly varying shape
function, the virtual work equation of equilibrium remains linear in the displacements. A
constant shape function is chosen for the torque, and a linear shape function is chosen for

moments and higher order force resultant terms (i.e., {,.) Equation 2.16 shows how the

linear shape function is applied.

F,

F(x)=<N,>{F}={1-i) i){Fi} (2.16)

where: F, is a generic resultant force or rigidity term at end i

< N, > is the standard linear shape function as shown

Linear shape functions are also chosen to represent the change in rigidity along the
element length, except that the torsional rigidity is assumed to be constant along the

length.
2.1.8 Corotational Element Displacement Interpolation Functions

Because of the corotational approach employed in the current formulation, the rigid
body motions of the element are not used to define the kinematic relationships which cause
element deformation. This approach is equivalent to considering deformations which are

measured with respect to the corotational axes, which follow the rigid body motion of the

element in space. For the traditional 12 DOF element, the deformations of the element which

cause element straining are: 1) the elongation of the element centroid, 2) the rotation of each
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end of the element about the local y and z axes, and 3) the element torsional rotation. These
corotational deformations result in 6 unknown deformations for the element. The expansion
from the 6 DOF corotational system to the conventional 12 DOF element system is performed
by considering equilibrium of forces on the deformed element. This technique is employed by
Cook (1981) to expand the corotational element stiffness matrix for planar steel elements.

The corotational kinematics for the 18 DOF beam finite element are similar to those
for the traditional 12 DOF element. Several modifications are utilized, however, which are
consistent with the slip formulation and the application of the element for use in nonlinear
analysis. As the steel and concrete are formulated as separate volumes in the virtual work
equation of equilibrium, the element deformations are defined so that the steel and concrete
appear as essentially two separate elements with respect to their translational DOFs. This
allows the steel and concrete shear DOFs to be defined separately when the corotational
stiffness 1s expanded to the element stiffness. As will be seen in Section 2.2, the definition of
separate shear DOFs for the steel and concrete is required for automated assembly of the
global stiffness matrix during nonlinear analysis.

A second modification to the conventional 12 DOF kinematic formulation is the
addition of midpoint axial degrees of freedom for the steel and concrete. This
modification allows a quadratic axial displacement shape function to be employed. This
approach is used by White (1986) for analysis of planar steel frames and has been used by
others to describe the axial deformation of an element which is partially plastified. The
quadratic axial displacement shapé function yields a more accurate representation of the
axial deformation for an element whose axial rigidity varies linearly between the element
ends than the traditional linear axial displacement shape function used for prismatic beams.
The extra midpoint DOFs are condensed out of the corotational stiffness before expansion
to the local element stiffness (see Appendix A).

Figure 2.4 shows the deformations of the steel and concrete portions of the
element. These deformational degrees-of-freedom will be used to derive the corotational

element stiffness matrix for the 18 DOF beam finite element.
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The corotational deformations of Fig. 2.4 are used to completely describe the
deformation of the centroidal axis of the element through the use of finite element shape
functions (Bathe, 1982). Conventional cubic Hermitian shape functions are used to
describe the y and z deformations which are caused by flexural rotation of the element
ends (Weaver and Gere, 1990). Also, a standard linear shape function is used to describe
the torsional rotation of the element. A quadratic shape function is used to describe the

axial deformation. Note that this shape function reverts to the linear form for the case

c

when Ae; = ATe (and similarly for the steel axial shape function).

m

z Ae, Ae’
se; AT K
5, = s
X s “°AQ X
JACK ¥
steel deformations: x-y plane steel deformations: x-z plane
ANy Ae; Ae® NZ Ae; Ae®
0 A f 0 3 f
zi yi
/l_\y/ll\ > = — N\ /I |\>> >
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Ae* concrete deformations: x-y plane concrete deformations: x-z plane

Figure 2.4: Corotational Deformations

The notation used in Fig. 2.4 is defined as:

Ae;  isthe incremental concrete elongation between the i-end node and the

m

midpoint node

Ae®  isthe incremental concrete elongation between the i-end node and the

j-end node

AQY, is the incremental rotation of the concrete i-end node about the y-axis

AQ7, 1is the incremental rotation of the concrete j-end node about the y-axis
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AB;; is the incremental rotation of the concrete i-end node about the z-axis
AQ;,  is the incremental rotation of the concrete j-end node about the z-axis
Similar definitions are given for the steel deformations.

Ae*  is the incremental displacement of the concrete i-end node with respect to

the corotational axes (which occurs due to slip)

A,  is the incremental torsional rotation from the i-end node to the j-end node

Equation 2.17 gives the shape functions in matrix form. Expansion of the
matrices yield the expressions which describe the deformation of an arbitrary point in the

element volume based on the nodal deformations.

{Ad™}=<Ae™ Ae° AB% MBS, A, A, Ae' ABI AS, ABL A8, AS, Al Ael>T

m

Au® =< N¢ > {Ad™}
Au =< N* > {Ad"™}
Av° =< N¢ > {Ad"™}
Av| =< NI > {Ad""}
Aw,” =< N% > {Ad"™"}
Aw, =< N¥ > {Ad"™}
AB, =< N, > {Ad™} (2.17)

<NE>=<1 —i+2* 0 0 0 0 0 0 000 0 —42+4i 0>
<N!>=<0 0 0 0 0 0 —i+2> 0 0 0 0 0 0 —4i%+4i>

<Ni>=<0 0 LE-2+i) 0 L(=*+7) 00 0 0 0 0 00 0>
<Ni>=<0 0 0 0 0 0 0 LG-2*+i* 0 L(=*+) 0 0 0 0>
<NE>=<0 0 0 LG-2"+i%) 0 L(-*+) 0 0 0 0 0 0 0 0>
<Ni>=<0 0 0 0 0 0 0 0 LE-2*+#) 0 L(-*+#) 0 0 0>
<Ng>=<0 0000000000 i 0 0>

.Xx
where: i = —

{Ad™} are the incremental natural element deformations

The derivatives of the shape functions are used to describe the element strains

when substituted into Eq. 2.8. A positive sign convention for internal stress and strain is
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inherent in the above shape functions and Fig. 2.4. A positive axial strain increment

(Au'® and Au') indicates elongation of the element centroidal axis, and positive
curvature increments (Av'', Aw'") indicate compressive strain in the positive quadrant of
the corotational axes at any cross section in the element. In addition, the positive sign
convention for internal axial force and moment are defined so that they produce positive

strain and curvature, and a positive torque produces positive torsional rotation.
2.1.9 Natural Element Stiffness Matrices

The finite element stiffness formulation presented in the previous sections is now
used to derive the stiffness matrices which relate the natural element deformations with
the element end forces. The expansion to stiffness matrices takes place in several steps.
First, the integrals of Eq. 2.14 are decomposed into area and length integrals, as discussed
in Section 2.1.7. Second, the area integrals are replaced by the numerical integration
terms. Next, the shape functions from Eq. 2.17 are substituted for the strain and
curvature terms. Equation 2.18 shows the resulting expression for the first integral term
of the virtual work equation, and equation 2.19 shows the terms which contain the slip

stiffness. All other terms are expanded similarly and are not shown here.

<N, >{{EA°} <8d™ > {N;}'< N >'{Ad™} +

<N, >{EQ, "} <8d™ > {N{}'< N > {Ad™} +
<N, >{{EQ,} <dd™ >{N:}Y<N{>"{Ad"™} +
<N, S EQ, Y <8d™ > (NS} < NE > (Ad™} +
[ <N >0,y <8a™ > (Ny'< Ni > (Ad™"} + |'a 218
<N, >{{El,} <8d"™ > {N,}"'< Ny >"{Ad"™"} +
<N, >{EL,} <8d™ > {N;}'< Ny >'"{Ad™} +
<N, >{EI}<dd™ > {N:}'< N >"{Ad""} +
<N,>{El,°} <8d™ > {N,}"'< N, >"{Ad"™}
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where: < x> is a row vector
{x} is a column vector

4

EA
{LEA°} = {1 EA"} and so on for the other rigidity terms
184,

<N, > {k}<8d"™ >{N:}< N> {Ad"™}~
f <N, > {k} <8d™ >{N;} <N; >{Ad"™} - |,
<N, >{k} <8d"™ > {N:} < NS > {Ad"™} +

u

dx (2.19)

<N, >{k}<8d™ >{N:} < N:>{Ad"™}

where: {k} = {:’}

J

Once the substitution and integration is completed for all the integrals of the
virtual work equation of equilibrium, a stiffness relationship can be written in terms of
the natural element deformations and the natural element forces. Equation 2.20 shows
this relationship for the current formulation. The natural element elastic and geometric

stiffness matrices are included in Appendix A.

[Knat ]{Adnal} — [K:at + K;;zt 1 K;lczzl ](Adnat} — {Afnat} (220)
where: [K™] is the natural element stiffness matrix

[K]*] is the natural element elastic stiffness matrix

[K ;’f’] is the natural element low-order geometric stiffness matrix
[K;; ] is the natural element high-order geometric stiffness matrix

{Af™?} are the incremental natural element forces
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2.1.10 Expansion to Local Element Stiffness Matrices

The current formulation assumes that external loads are applied only at the
element ends. For this reason, the calculation of midpoint axial deformation is not
required, and the midpoint DOFs are removed from the natural element stiffness matrix
through the technique of static condensation. The use of static condensation to reduce the
natural stiffness matrix from 14x14 to 12x12 is presented in Appendix A.

The reduced natural element stiffness matrix has 12 DOFs. In order to assemble
finite elements into a global stiffness matrix, the rigid modes of deformation must be
considered. These rigid modes include 3 rigid body translations and 3 rigid body
rotations. Cook (1981) and Morales (1994) show how the rigid body deflections and
rotations are included for planar steel elements. The conventional method of expansion
to a local element stiffness matrix must be modified to accommodate three-dimensions
and the separate steel and concrete DOF's in the current formulation.

In the current formulation, the local DOFs are numbered so that the assembly of
the global stiffness matrix can be easily automated. In this numbering scheme, the first
three DOFs at each end of the element correspond to the steel translations, the next three
DOFs correspond to the rotations, and the final three DOFs correspond to the concrete
translations. Figure 2.5 shows the natural element forces, including the shear forces
which can be computed through static equilibrium. The separate steel and concrete
bending moments in this figure are used to compute the separate steel and concrete shear
forces, respectively, through static equilibrium. This separation between the steel and
concrete moments in the corotational coordinate system is required in order to transform
the corotational element stiffness matrix to the local element coordinate system. The
sepatae steel and concrete moments at each end of the element are combined in the local
element stiffness relationship because the steel and concrete rotations are the same at each

end of the element.
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Figure 2.6 shows the numbering scheme and positive sign convention adopted for
the local element DOFs. This figure indicates the positive sign convention for both local
element forces and local element deformations.

As mentioned previously, the incremental element shears (which are not modeled
in the natural element stiffness formulation) are computed by considering static
equilibrium of the element in the C2 configuration. By considering the incremental rigid
body rotation of the element and the element forces at Cl1, it is apparent that the axial
force at C1 affects the element stiffness. This is often referred to as the P-A effect, or the
“external stiffness” of the element (Cook, 1981; Morales, 1994). In the current
formulation, the axial force at C1 is assumed to act in the original direction of the element
chord, even after the element has achieved the C2 configuration. It will be seen in
Section 2.3 that the effect of the incremental axial force during the rigid body rotation
from CI to C2 is also included in the external stiffness of the element during force

recovery (Morales, 1994).

/] \y

AM® ZVCAPC AT aP? X
zi E_k Az
AMSZi Vc AMC, *AMS
2 Ay Y4 VS 4 ¥j
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$ AMy1 @AMS. *AMW
; 7 ;
i-end AV; j-end
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Figure 2.5: Natural Element Forces
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Figure 2.6: Local Element Degrees of Freedom

The issue of external stiffness is complicated by the separate steel and concrete
axial forces, and the gradual transfer of axial force between the two materials along the
length of the element. In conventional beam finite element formulations, the axial force
is assumed to be constant in the element. This assumption remains true in the current
formulation for the total force at any point along the element length, but the steel and
concrete axial forces, taken separately, may vary from the i-end of the member to the j-
end. As mentioned in Section 2.1.7, the axial forces in the steel and concrete respectively
are allowed to vary linearly from one end of the member to the other. Using this
assumption, the geometric nonlinear stiffness matrix remains linear in the displacements.

Cook (1981) shows how the corotational stiffness is expanded to local element
stiffness for planar elements using a representation similar to that of Figs. 2.5 and 2.6.
First, the incremental local element forces are expressed in terms of the incremental
natural element forces. Next, the incremental natural deformations of the element are
expressed in terms of the incremental element deflections. These relationships are
expressed in matrix form, and the expanded local element stiffness is formed. The
matrices used in expansion are presented in Appendix A. Equation 2.21 shows the

general form of the equations used in expansion of the corotational stiffness.

41



[Ke]18x18 - [Q]ISxIZ [Knat ]12x12 [g}]lex18 + [RB]18x18 (221)
where: [K°]'**® is the local element stiffness matrix, including geometric
nonlinear terms

[K™ 1> is the natural element stiffness matrix, including
geometric nonlinear terms

[Q]"82 is the natural-to-local transformation matrix

[RB]® is the matrix containing the rigid body geometric nonlinear
stiffness terms (external stiffness)

2.2 Structural Analysis of Three-Dimensional Frames Using the 18 DOF

Finite Element

The 18 DOF beam finite element described in the previous sections has the |
advantage of being able to model the slip between the steel and concrete portions of a
CFT member. The element provides the capability to study the effect of slip on the
overall behavior of CFT members which are part of structural frames. However, several
modifications are required to the conventional global assembly and solution procedure for
three-dimensional frames. First, the 18 DOF element must be compatible with
conventional 12 DOF steel wide-flange beam elements. Second, the assembly of these
elements into a global stiffness matrix must be easily automated using standard
procedures. Finally, the shear compatibility conditions assumed during the finite element
formulation must be imposed for the global structural system.

This section describes the procedure adopted for assembly of the global stiffness
matrix which includes either 12 DOF steel beam-columns, 18 DOF CFT beam-columns,
or a combination of these elements. Next, the use of penalty functions to impose shear
deformation compatibility is discussed, along with issues related to the solution of the

\
i
global system of equations. {
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2.2.1 Assembly of the Global Stiffness Matrix

Figure 2.6 shows the DOF numbering scheme for the 18 DOF CFT finite element.
This numbering scheme was chosen so that the global stiffness matrix could be easily
assembled through conventional techniques. In the current formulation, the first two sets
of three DOFs at each joint represent the steel translations and the rotations respectively.
This numbering scheme corresponds to the conventional formulation which has 6 DOFs
per joint. The final three DOFs correspond to the concrete translations.

This numbering scheme has several advantages. First, the standard local-to-global
transformation matrices can be used with the addition of six more rows and columns to
account for the concrete translations. Second, when steel elements are used in
combination with 18 DOF CFT elements, the steel beam elements are assembled directly
into the first 6 DOFs at a joint. When there are no CFT elements at a joint, a flag may be
set so that only 6 DOFs are considered at that joint. The assembly of steel beams with the
steel translational DOFs of the CFT element is consistent with typical shear-tab
connections and other connections which do not penetrate the steel tube wall. In this
case, all girder shear must be transferred to the concrete core of the CFT through the
steel-concrete slip interface. It will be seen in Chapter 3 that the slip interface is very
stiff, such that the steel tube load often transfers to the concrete in a relatively short
region above and below the connection. The modeling of this behavior is one of the main
advantages of the current formulation. Typical through-type connections are common
when full restraint is desired. These connection regions, as well as other situations where
the concrete is fully engaged by the steel, can be modeled as slip-restrained in the current
formulation by assigning restraints in the global system of equations (see Section 2.2.2).
Comparison to experiments on shear transfer at a beam-to-column connection are given

in Chapter 3.
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2.2.2 Inclusion of Shear Constraints in the Global System of Equations

If 18 DOF CFT beam-column elements are used as members in a structural frame
model, shear deformation compatibility constraints are required between the steel and
concrete translational DOFs at each joint. For most practical structures, the CFT beam-
columns will be aligned in vertical column stacks, requiring two global compatibility
conditions (perpendicular to the axis of the column stack) at each joint. This may not
always be the case, however, as other structural systems which may have arbitrary
orientations of members entering each joint are possible. Moreover, initially aligned
elements will become inclined due to geometric nonlinearity. For this reason, a general
formulation for shear compatibility constraints is required which can be implemented in a
structural frame matrix analysis program.

The technique adopted for imposing compatibility conditions on the CFT steel and
concrete translational DOFs is the use of penalty functions imposed in the global
coordinate system. This technique involves assigning a large (but finite) stiffness between
two DOFs thus constraining their values to be nearly identical. Penalty functions are
slightly less precise than the use of a technique such as Lagrange multipliers, but they do
not complicate the solution of the global stiffness matrix.

Penalty functions are described by Bathe (1982) for use in structural analysis. The
governing linearized global equilibrium equations are modified to include the new
constraint equations, which are functions of the unknown displacements as shown in Eq.

2.22.

[[K,G]+oc{e,.} <e, >T]- {AU}={AR}+aU; -{e;} (2.22)

where: [K ]is the global tangent stiffness matrix
{e;} is the vector containing the global constraint equation

{AU} is the vector of global incremental displacements
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o is a constant of relatively large magnitude

{AR} is the vector of global incremental applied loads

U; is the right-hand side of the global constraint equation

The advantage of using penalty functions in the current formulation rather than
other constraint techniques such as Lagrange multipliers is that the total number of global
equations to be solved remains unchanged. In addition, the equations which are required

to impose shear constraints are straight forward to formulate, and involve a minimal

number of computations in the modification of the global stiffness matrix. Finally, U, is
always zero, so the right-hand side of the global system of equations remains unchanged.
The implementation of this procedure for a structure containing 18 DOF beam-
column finite elements requires only the knowledge of the global nodes and directions in
which the shear constraints are to be imposed. Consider the structural joint pictured in
Fig. 2.7. The directions of shear compatibility can be easily determined by considering
the cross section vectors of either element which enters the joint. The vector aligned with
the element web and the vector aligned with the element flange are previously required in
order to form the local-to-global transformation matrix for the element. Equation 2.23
shows how these vectors can be applied directly to the joint DOFs in order to form the

compatibility constraint equations for the joint.

N Z

18 DOF elements

N
7
Y

X
Figure 2.7: Global Directions of Element Translational DOFs at a Joint
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. (AU}
<<0>™ <l >™ <0>™ > {AU 3 =0 (2.23)
AU

where: <e; >= <<ﬁ>1x3 <O>m "<ﬁ>m>

{AU,}* 'and {AU,}*" are the global incremental displacements which do
not correspond to the joint for which translational DOF constraints are
being imposed

{AU, }** is the global incremental displacement vector which

corresponds to the joint for which translational DOF constraints are being

imposed

< #>" is the unit vector in the global constraint direction

This equation shows an example of one constraint equation, but similar equations

can be written for any other steel-concrete deformation constraints at a joint. The unit
vectors contain at most 3 non-zero terms, for a total of 6 non-zero terms in the constraint
equation {e,}. The general form of Eq. 2.22 can be reduced to that of Eq. 2.24 and Eq.
2.25 for the 9x9 section of the global tangent stiffness matrix which corresponds to the
joint for which the translational constraints are being imposed, with the remaining
portions of the global stiffness matrix remaining unchanged. In Eq. 2.25, the dashed lines

separate the 9x9 matrix into 3x3 sections.

[[Kj]+oc{e,.*} <e >]{AUj} = {AR,} (2.24)
oafy <i> 0 -y <>

(K +atey<ef >]=[K | 0 0 0 2.25)
—a{fy <Ai> 0 oAy <A>
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The accuracy of the penalty function method is dependent upon the magnitude of

the multiplier o.

A larger value for the multiplier produces a more accurate solution.

Bathe (1982) suggests that a should be 100 to 1000 times as great as the largest diagonal

term in the global stiffness matrix. Figure 2.8 shows an example of an axially loaded

CFT beam-column which has slip restrained at both ends. The “exact” solution is

calculated using Lagrange multipliers. The solutions using various magnitudes of the

penalty functions are shown in Table 2.1. The analysis is extremely accurate for the case

when the value for o is 1000 times the highest diagonal term.

Table 2.1: Axially Loaded Column Example Results

Lagrange Penalty Penalty Penalty

Multipliers Function ~ Function Function

o=10X o =100X o =1000X

A steel (mm) 0.725226 0.729813 0.725848 0.725404
A concrete (mm) 0.725226 0.725353 0.725354 0.725354
% error steel -—- 0.632 0.0858 0.0245
% error conc. - 0.0175 0.0177 0.0177

P

|

T

- EA" = 6.89x10* kN
. EA“" = 6.89x10* kKN
. L=10° mm
R P =100 kN
. K, =10*MPa

-

Figure 2.8: Axially Loaded Column Example |
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2.2.3 Additional Issues Related to the Use of Constraint Equations

In addition to the required shear constraints, there are practical analysis situations
when the steel and concrete should not be allowed to slip in the axial direction at a
structural node. These situations arise when mechanical shear connectors are provided at
the node, when there is a change in CFT cross section sizes at a node, when CFT
elements frame into a node from different directions, or when a beam-to-column
connection includes diaphragms or through-bolts such that they enforce axial strain
compatibility of the steel and concrete at a joint. In order to prevent slip at a node, an
additional constraint equation of the same form as Eq. 2.23 is required in the direction of
the element centroidal axis. This equation can be defined as an input parameter, or can be
automated by considering the unit vector along the axis of an element which frames into
such a joint.

An issue arises when conducting geometrically nonlinear analysis using constraint
equations, in that the directions of shear constraint are required to be updated to reflect
the changing geometry of the structure. In the current formulation, the required
constraint equations are determined at the beginning of the analysis, and are assigned to
nodal DOFs in the global stiffness matrix rather than to local DOFs at the element level.
This scheme is adopted to avoid problems which may arise due to redundant equations
resulting from multiple CFT elements entering at a single node, and to simplify the
algorithm used in the computer implementation. The constraint directions are initialized
based on the orientation of the structural members at the beginning of analysis. For
geometrically linear analysis, the constraint equations are not updated. For geometrically
nonlinear analysis, the constraint equations are assumed to rotate with the structural node
at which they act. This approach assumes that all structural members are rigidly
connected, an assumption which is consistent with the scope of the current formulation.
The rotation of the constraint equation is a linear transformation of a vector in three-
dimensional space (Weaver and Gere, 1990), and is computed directly from the nodal

rotations. Equation 2.26 shows the general form of this transformation.
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{, Ay =[Tl{,n} (2.26)

where {,7} is the unit vector in the constraint direction in configuration C2
{,7} is the unit vector in the constraint direction in configuration C1

[T] is the C1 to C2 transformation matrix given by:

........ cosAB-cosAy i cosAB-sinAy . sinAB
—sinAa.-sinAf-cosAy | —sinAc-sinAP-sinAy )

[T]= ) 5 sin Ao - cos AP
TcosAa-sindy heesAa-cosAy
—cosAa -sinAB-cosAy : —cosAa-sinAP-sinAy

cosAa - cos AP

| +sinAa. - sin Ay i —sinAa - cosAy ]

where: (Ao, AB,Ay) is the incremental rotation of the joint in the global

coordinate system

2.3 Force Recovery

The accuracy of the fiber element approach relies on the proper modeling of the
constitutive behavior of the materials. In addition, the incremental strains for each fiber
element must be recovered from the incremental global deformations in a manner
consistent with the finite element formulation presented in Section 2.1. Based on the
incremental strains and the constitutive models, forces may be recovered at the element
ends. This section presents several key features of the force recovery procedure adopted
for the current formulation. These include the technique for including the high-order
geometrically nonlinear terms of the virtual work equation of equilibrium which are
nonlinear in the displacements (integrals three and six of Eq. 2.14), recovery of element
centroidal axis strain and curvature from the element corotational forces, and the

technique used for materially nonlinear force recovery.
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2.3.1 Inclusion of Incremental-Iterative Geometrically Nonlinear Terms

The high-order geometrically nonlinear stiffness terms of the virtual work
equation of equilibrium that include the increment in stress cannot be accounted for when
the tangent stiffness of the element is formed at the beginning of a load step or iteration
since these terms are nonlinear in the displacements. However, Morales (1994) suggests
a technique for including these terms (integrals 3 and 6 of Eq. 2.14) during force
recovery. This technique takes advanfage of the fact that the incremental elongation of an
element can be computed directly from the element nodal deformations, accounting for
the geometrically nonlinear elongation which takes place during the current iteration
(Cook, 1981). The other incremental corotational deformations (element end rotations)
are computed by subtracting the incremental rigid-body rotation from the incremental
element end rotations. Once all the incremental corotational deformations have been
computed in this fashion, the beginning-of-iteration corotational tangent stiffness matrix
is used to compute the incremental axial forces in the steel and concrete at each end of the
element by multiplying the first, second, and seventh rows of the natural stiffness matrix
by the incremental element deformation vector {Ad™}. The steel and concrete
incremental axial forces are used to update the axial force terms of the low-order

at

geometric stiffness matrix [K})"] to form the matrix [K ;’f’ ]* in which the axial force
terms are replaced by (P°='P¢ + AP¢), and (P*='P* + AP*). The remaining
corotational element end forces (bending moments) are computed using the updated
natural stiffness matrix [K™ =K' ]+[K ;j” 1*+H K ;"2”] . This technique accounts for the

effect of the incremental axial force on the element stiffness during the current load step,
i.e., it incorporates the third and sixth terms of Eq. 2.14 (see (Morales, 1994) for details of

a similar force recovery technique).
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2.3.2 Computation of Element Strains from Element Forces

The steel and concrete stress-strain relationships are discussed in Chapter 4. The
element strains can be computed using the strain-displacement relationships developed in
Section 2.1.4 (Eq. 2.9 and 2.10), but this method requires the calculation of midpoint
axial deformation, thus eliminating the computational benefit of static condensation of
the midpoint DOFs. The strain-displacement relationships may also produce strain
discontinuities at element ends due to the lack of continuity of the derivatives of the finite
element interpolation functions. For example, the interpolation function for curvature is
linear (i.e., second derivative of the transverse deflection, which is cubic). Thus the
curvature computed from the element end rotations and interpolation functions is based
on the assumption that the element is prismatic.

A more consistent approach is to recover the element strains from the member end
forces, as these forces are in equilibrium at the element ends (White, 1986). The strain-
force relationship is developed by utilizing the material tangent stiffness relationship at a
cross section, thus taking into account that the element may be partially plastified.
Equation 2.27 shows the expansion of the integrals of Eq. 2.15 which include element

forces.

AP = [Atdd” = [\ E*Mudd® = [ B (hus—ylv",~zAw", Yid®
AF A s

= EA“M+EQEAV' +EQ-AW',
AP = [Avdd" = [\ E'Au"dd* = [ E*(pu"i—yAv" —zAw", Yid*
A4f A

4

= EA' A+ EQIAV" + EQJ AW, (2.27)
AM, = - [yATdd® + yATdd" = - [y, E*Au dA" - [y,E*Au® dA°
A

A &

= LE"(—yAu'j+y2Av"c+yzAw"£)1A"'+ IlE‘(—yAu’ﬁ+y2Av"c+yzAw"c)1A”
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Therefore:
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The combined bending moment in the steel and concrete is used when considering
the moment-strain relationship, as the steel and concrete have the same bending curvature
at the member ends. Equation 2.28 shows the matrix representation of the strain-force
relationship for the CFT beam-column with interlayer slip. This expression allows for
calculation of separate steel and concrete axial strains, while retaining the same bending
curvature for both materials. As mentioned previously, the strains are not influenced by
the rigid-body motion of the element, and therefore, the axial strain and bending
curvature are the corotational deformations of the element.

Once the incremental element end strains and curvatures have been determined for
each end of the element using Eq. 2.28, the longitudinal strain at any point in the element
can be determined using Eq. 2.9. Using this approach, an incremental strain is computed

for each steel and concrete fiber of the end cross sections.
2.3.3 End-of-Iteration Element Force and Rigidity

Once the strain increment has been determined for a given fiber, the appropriate

constitutive material model is used to update the stress (*t) and tangent modulus of the

fiber (?E,). For incremental-iterative analysis, care must be taken to use the appropriate
reference state for the materials. Crisfield (1991) presents a discussion of the need for a
consistent material nonlinear recovery scheme during iterations on the global structural
system. If the stress and strain are updated at the end of each global iteration and used as

a reference for subsequent iterations, spurious unloading may be detected during the
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global load increment. Instead, the state of stress and strain for the material at the
beginning of the global load increment is used as the reference state for material stress-
strain calculations. The end-of-iteration tangent modulus determined for éach fiber is
used to form the tangent stiffness for the next load iteration or increment.

White (1986) and others have suggested techniques for insuring force equilibrium
at the end of global load increments or iterations which include material nonlinear
behavior. Typically, the incremental axial force is assumed to be constant along the
member length, and therefore the incremental axial force computed using numerical
integration is averaged at the two ends of the element. In addition, the incremental
element end moments are computed through numerical integration, and the shears are
computed directly from static equilibrium. These end-of-iteration forces are then
compared to the applied load and an unbalanced force vector is formed. Using this
procedure along with the Newton-Raphson iterative scheme (Bathe, 1982), the applied
loads and resultant forces are in equilibrium at the end of each global load increment.

However, the current analytical formulation for slip combined with the sudden
and extreme nonlinear behavior of concrete in tension gives rise to substantial changes in
the unbalanced forces. The technique of numerical integration can be used effectively to
determine the tangent stiffness of the 18 DOF CFT element, and can also be used to
determine the end-of-iteration forces in the element, but the method for ensuring force
equilibrium described in the previous paragraph causes unwanted material nonlinear
behavior to occur. In particular, the technique of averaging axial force between the two
ends of an element may result in the cracking of concrete at a cross section which should
remain completely elastic. An example of this type of behavior is a cantilever beam with
a transverse tip load. When the concrete cracks at the fixed support, the applied axial
load is zero. Due to concrete material nonlinearity (cracking) which happens within the
iteration, the recovered axial force is compressive. Using the conventional technique, the
average axial force is assumed to act at each end of the element. In order to bring the
element into equilibrium with the applied axial loading, a tensile force is applied to the

element at each end during the subsequent iteration. This force causes substantial
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cracking of the concrete at the free end of the element, which is obviously not the correct
solution. The subsequent path dependent behavior often leads to incorrect results.

In order to avoid this problem, material nonlinear behavior is not included in the
calculation of unbalanced force during the Newton-Raphson iterations. This method can
be thought of as a simple-step incremental approach with respect to materially nonlinear
behavior. Unbalanced forces caused by geometric nonlinearity are considered in the
conventional fashion.

The issue of concrete cracking, and the separation of the steel and concrete axial
DOFs, also affects the assembly of the end-of-step forces into the global end-of-step force
vector, due to the unbalanced forces caused by geometrically nonlinear behavior. This
may result in compressive unbalanced forces in some instances. The resulting
geometrically nonlinear behavior is similar to that described above for materially
nonlinear behavior. To mitigate the results of this type of behavior, the current
formulation assumes that all external point loads are applied to the steel DOFs only. This
assumption is consistent with the loading of CFTs as columns in structural frames if shear
tab connections are used, where applied vertical loads are transferred from the girders to
the steel tube, and must be transferred to the concrete core through interface stress.
Alternately, loading the steel tube only, but then restraining slip at the joint, also models
the direct transfer of load into the concrete that is often exhibited in fully restrained
connections.

Additionally, the end-of-step forces from the force recovery procedure are
assembled only into the steel DOF's of the elements (i.e., the steel and concrete axial
forces from force recovery are assumed to act on the steel axial DOF for the purpose of
assembling the global end-of-step force vector in preparation for computing the
unbalanced force vector). The assumption that loads are applied only to steel DOFs and
the subsequent assembly of recovered forces into the steel DOFs of the global structure
does not affect the accuracy of the geometrically nonlinear formulation (see Appendix B),
or the accuracy of the resulting analysis of individual CFT members under axial, flexural,

or combined loading (see Chapter 5). Rather, this approach is taken here to ensure a
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stable convergence to a null unbalanced force vector, without invoking inappropriate

path-dependent behavior of the concrete constitutive formulation.

2.4 Global Solution Strategy for Material and Geometric Nonlinear
Analysis

The global solution strategy for material and geometric nonlinear analysis of structures
which include the 18 DOF CFT beam-column element follows closely the strategy
presented by Bathe (1982) and White (1986) (for steel frame structures), with a few
notable exceptions. A step-by-step procedure is outlined below, with specific reference
to the points which differ from conventional solution strategies. This flowchart is
presented within the context of executing an incremental/iterative Newton-Raphson

solution strategy (Bathe, 1982).

1. At the beginning of a global solution increment, the structure is assumed to be at a
converged equilibrium state, and each element is assumed to be represented by a
straight line joining the two end nodes. The element stiffness matrices are formed
based on the converged values of force and rigidity. The stiffness matrices are
formed in the corotational coordinate system and are then transformed to the local
element coordinate system. It is important to note that the concrete material nonlinear
phenomena of tensile cracking and compressive unloading require each element
geometric nonlinear stiffness matrix to be based on the globally recovered element
forces from the previous load step rather than the forces recovered from fiber element
numerical integration of the previous iteration (Crisfield, 1991). This is done because
the technique for enforcing element axial force equilibrium including updated
assessment of the material state may cause grossly erroneous material behavior, as

discussed in Section 2.3.3.
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. During subsequent Newton-Raphson iterations, the element stiffness matrices are
formed using the tangent modulus at each fiber at the end of the previous iteration.

. The midpoint DOFs of the CFT elements are condensed out of the local element
stiffness matrices as shown in Appendix A. The same procedure is used to condense
out the midpoint DOFs of the 12 DOF steel wide-flange beam elements, as shown by
White (1986).

. The element stiffness matrices are rotated from the local element coordinate system to
the global coordinate system based on the geometry of the global nodes at the end of
the previous iteration.

. The equations used in the global stiffness matrix to enforce equilibrium between the
steel and concrete deflections for the CFT elements are also rotated in the global
coordinate system as discussed in Section 2.2.3. By rotating the constraint equations
as such, they always act in the appropriate global direction for the deformed structure
during geometrically nonlinear analysis.

. The element stiffness matrices are assembled to form the global stiffness matrix in the
conventional fashion. The global constraints are then assembled into the global
stiffness matrix in the form of penalty functions, as described in Section 2.2.2. The
magnitude of o for the penalty functions is determined at each step by scanning the
diagonal of the global stiffness matrix for the highest term. The value of a. is chosen
to be 1000 times the highest diagonal term, and is used for all constraint equations.

. The global incremental load vector is formed as the remainder of the applied loads
and the unbalanced forces at the end of the previous iteration. If the previous iteration
ended in convergence, the global incremental load vector is still formed as the applied
load vector for the current load step minus the unbalanced forces at the end of the
previous load step (for simple-step incremental analysis, subtracting the unbalanced
forces from the previous step helps ensure that the internal forces of the structure
remain in equilibrium with the applied loads). The unbalanced forces from the
previous step are due to the convergence tolerance, which may leave somé

unbalanced force when convergence is achieved.
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8.

10.

11.

12.

13.

Gauss elimination (LDU decomposition) is used to solve the global system of
equations. The computer code is given by Bathe (1982) for LDU decomposition of a
matrix stored in skyline form. A global limit point is detected by a negative on the
diagonal of the decomposed global stiffness matrix. When a global limit point is
detected, the structure becomes unstable and the analysis is stopped.

The deformations of the elements are recovered using the geometrically nonlinear
force recovery procedure of Morales (1994) as described in Section 2.3.1. First, the
incremental axial force is computed directly from the elongation of the element
centroid. The incremental axial force is then used to update the axial force terms of
the element geometric nonlinear stiffness matrix before the other local element forces
are recovered. This technique accounts for some of the high order terms of the virtual
work equation of equilibrium (Morales, 1994).

The element end cross section strain and curvatures are computed from the element
end force-strain relationship as shown in Section 2.3.2. This technique is employed
by White (1986). It is more accurate than strain recovery using the shape functions to
compute strains, as the derivatives of the shape functions may be discontinuous
between elements at a node (White, 1986).

For each cross section in the structure, the element end strains are used to compute the
incremental strain for every fiber. Material constitutive states are updated and used to
compute the uniaxial stress and the tangent modulus of each fiber.

Numerical integration is used at each cross section to determine the end-of-iteration
rigidity. Numerical integration can also be used to determine the end-of-iteration
element end forces, but these forces are not used to enforce element equilibrium.
Rather, it is assumed that material nonlinearity does not affect the equilibrium of the
elements. This approach is, again, adopted to avoid numerical problems that result
from concrete nonlinear phenomena. Given sufficiently small solution steps,
however, the analysis yields accurate results.

The total local element forces are computed as the previously computed total force

plus the incremental forces from the current iteration. The local element forces are
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transformed to the global configuration based on the position of global nodes at the
end-of-iteration. The element forces are assembled into a global end-of-iteration total
force vector. The total forces are compared to the total applied loads, and an
unbalanced force vector is computed. The Newton-Raphson iterative solution
strategy is used to converged on an equilibrium configuration for the global structure.
For this type of analysis, the global incremental work is compared to a tolerance to
detect convergence to an equilibrium configuration. If a non-iterative approach is
taken (i.e., simple-step incremental analysis), the end-of-step configuration is
assumed to be an equilibrium state, and the negated unbalanced force vector is
applied to the global load vector for the next load step as described in step 1 above.
Steps 2-13 are repeated until global convergence is achieved or a global limit point is
detected. If convergence is detected, a new global solution increment begins with

step 1.
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Chapter 3

Bond and Slip in Rectangular CFTs

CFT researchers disagree about the effect of bond and slip on the deformation and
load capacity of CFT columns and beam-columns. Slip and loss of bond have been
observed in experimental tests which were designed to induce this behavior (Virdi and
Dowling, 1980; Tomii, 1985; Lu and Kennedy, 1994; Shakir-Khalil, 1993a, b, ¢, 1994b;
Shakir-Khalil and Hassan, 1994a; Shakir-Khalil and Al-Rawdan, 1995, 1996).
Correspondingly, many building codes for composite construction require mechanical
shear connectors if the calculated interface stress in a CFT column exceeds a limiting
value (BS5400, 1979; AIJ, 1980). However, the effect of slip on the overall performance
of CFTs remains a subject of research, and it is possible that for frame structures the
effect of loss of bond is relatively small, especially with respect to the global frame
behavior.

- To provide comprehensive modeling of slip, the computational formulation
presented in Chapter 2 allows the steel and concrete in a CFT element to have
independent axial deformation. The two materials exchange axial force based on the
properties of a slip layer which separates them. The model is intended to capture the
major slip attributes observed in experiments on rectangular CFTs. The primary causes

of slip are loss of bond at connections of steel beams to CFT columns, and loss of bond in
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flexure due to concrete cracking and composite beam action. Behavior ranging from
perfect bond to perfect slip may be modeled.

It will be seen in the following sections that mechanical shear connectors
effectively prevent slip, provided that enough connectors are present to transfer applied
loads to the concrete core. CFTs with mechanical shear connectors are therefore a trivial
case and do not require special consideration. The computational model presented in
Chapter 2 is intended to model CFT elements which do not have shear connectors and
which have no special surface preparation to promote or inhibit bond.

This chapter is structured as follows. Section 3.1 presents a review of the
experimental research which has been conducted to determine the slip and bond
characteristics of rectangular CFTs. Section 3.2 presents the general characteristics of
bond and slip which are observed experimentally, and which are modeled by the current
computational formulation. Section 3.3 presents a general description of the capabilities
of the computational slip model. Section 3.4 presents the calibration of slip and bond
parameters which are required input for the computational model. The parameters are
determined by examination and comparison to published experimental research. A set of
calibrated parameters are determined which can be applied to all structural configurations
which may include slip, including analysis of isolated CFT beams and columns, and
connection regions consisting of steel beams which frame into rectangular CFT columns
at connections that do not penetrate the steel tube. Alternately, perfect bond may be
modeled in connection regions where the concrete is engaged directly (see Section 2.2.3)
Finally, in Section 3.5 the calibrated parameters are applied to additional verification
examples in which the computational model is compared to published experimental test

results.
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3.1 Review of Experimental Literature

Research on CFTs has historically focused on determining the strength and
deformation characteristics of individual members (Gourley et al., 1995). Early tests did
not consider the effects of bond or slip, as the specimens were usually axially loaded
columns with capped ends, ensuring that the applied load was evenly distributed to both
materials (Bridge, 1987; Cederwall, 1990; Shakir-Khalil, 1991, to name a few). Some
experimentalists commented on slip and bond however, and suggested that the effect on
overall behavior should be determined (Bridge, 1976; Orito et al., 1987; Matsumura and
Konno, 1989; Grauers, 1993).

Recently, researchers have begun to examine the parameters of CFTs which have
more complex, subtle effects on overall behavior than nominal dimensions and material
strength. These research programs have included for example, testing of a variety of new
connection details for steel wide flange beams framing into circular or rectangular CFTs
(Dunberry et al., 1987; Ji et al., 1990, 1991; Kamba, 1991; Azizinamini et al., 1992a, b;
Azizinamini and Prakash, 1993a, b; Kato, 1993; Shakir-Khalil, 1993¢, 1994b;
Azizinamini and Shekar, 1994; Shakir-Khalil and Al-Rawdan, 1995, 1996, Ricles et al.,
1995; Alostaz and Schnieder, 1996). Supplementary push-out tests have been performed
to determine the bond capacity at these connections (Morishita et al., 1979a, b; Tomii et
al., 1980a, b; Virdi and Dowling, 1980; Shakir-Khalil, 1993a, b; Shakir-Khalil and
Hassan, 1994a; Shakir-Khalil and Al-Rawdan, 1995, 1996). Other researchers have
instrumented beam specimens to investigate slip which may occur during flexural tests
(Lu and Kennedy, 1994). These three categories, push-out studies, connection studies,
and flexural tests, form the available literature to date which provides information on
bond and slip in rectangular CFTs. The following sections present summaries of the
major publications which represent landmark research on slip and bond in CFTs. Several

of the publications will be used in the slip model calibration and verification.
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3.1.1 Push-Out Studies of Concrete-Filled Steel Tubes

Push-out studies have been used to develop building codes and design
recommendations for the bond strength of the steel-concrete interface in rectangular
CFTs. Inpush-out tests, the concrete is cast in the steel tube so that a gap is left between
the concrete and the loading platen during testing (Fig. 3.1a). By loading only the
concrete at one end of the specimen and supporting only the steel tube at the other end, all
applied load is required to be transferred through the steel-concrete interface. Early

testing programs focused exclusively on the determination of bond strength.
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Figure 3.1: Experimental Push-Out Test Setup

The push-out studies which have been conducted recently by Shakir-Khalil were
instrumented to measure slip and load transfer from the steel to the concrete during
testing. These publications provide the first insight into the load-slip relationship at the

interface between the steel and concrete in rectangular CFTs. This series of tests also
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included various other support conditions such as gusset plates welded to the sides or
corners of the tube, and thick plates welded flat to the side of the tube (Fig. 3.1b, c, d).
Following is a description of several of the key publications on the push-out
resistance of CFTs (focusing on square or rectangular CFTs). As will be seen, these
publications are not used directly in the calibration of the computational model, but
provide information about the effect of various support conditions as well as the load-slip

relationship and bond mechanisms.

Virdi and Dowling (1980):
One of the earliest published works on bond in CFTs was by Virdi and Dowling

(1980). They presented the results of over 100 push-out tests conducted on circular CFT
stub columns. The results of this experimental program gave the first indication of the
bond strength in circular tubes, but the experimental scatter was significant. The authors
suggested a bond strength of 0.41 MPa. However, values as high as 2.1 MPa were

recorded.

Tomii (1985):

A research program was conducted in Japan to develop recommendations for
bond strength to be used in the AlJ standards for composite construction. The program
included tests published by Morishita et al. (1979a, b) and Tomii et al. (1980a, b), to
name a few. These publications were discussed by Tomii (1985) in the context of design
recommendations. In this paper, Tomii discusses the sources of interface stress and
methods for calculating stresses at service conditions. The mechanisms include shear
transfer from the steel tube to the concrete core at beam-to-column connections, as well
as composite beam shear which is induced by cracking of the concrete in tension. He-
suggests a technique for calculating interface stress and gives recommendations for

providing shear connectors or other mechanical shear transfer mechanisms.
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Shakir-Khalil (1993a):

Shakir-Khalil (1993a) presented the results of 40 push-out tests on rectangular,
square, and circular specimens with and without structural bolts as shear connectors. In
addition to mechanical connection, the length of the steel-concrete interface and the
conditioning of the interface were studied. Several of the specimens were oiled to
prevent adhesion of the concrete to the steel tube walls. For the unoiled rectangular
specimens without mechanical connectors, the calculated bond strength varied from 0.33
MPa to 0.59 MPa with an average value of 0.44 MPa, suggesting that the BS5400 value
of 0.4 MPa was a reasonable estimate of bond strength. The circular sections which had
no mechanical shear connectors and were unoiled had bond strength values ranging from
0.65 to 0.93 MPa with an average bond strength of 0.80 MPa. The length of the steel-
concrete interface did not affect the bond strength of the specimens.

The tube walls were cut away from several specimens to observe the condition of
the concrete after testing. Abrasions near the corners of the rectangular specimens
indicated that most of the slip resistance occurred due to surface irregularities, especially
in the corners where the tube walls provided higher resistance to bulging. The circular
specimens showed an even distribution of abrasion marks, indicating that the circular
specimens were more effective in resisting slip around the entire perimeter of the section.

The published results included graphs of applied loading verses measured slip in
the specimens. Although the load-slip behavior was not the focus of the research, it
provides valuable insight into the shape of the curve. The shape of the load-slip curve for
specimens with no mechanical connectors was nearly rigid-perfectly-plastic. The

specimens with mechanical connectors showed much more ductile behavior.

Shakir-Khalil (1993b):
Shakir-Khalil (1993b) presented the results of 56 push-out tests on square and

circular CFT specimens with and without Hilti nails or structural bolts as mechanical
connectors. In this series of tests, the length of the steel-concrete interface was held

constant. Different methods of supporting the steel tube were investigated to determine if
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the support conditions affected the test results. Figure 3.1 shows the various support
configurations employed. Some specimens were supported at the base as in the previous
investigation (Fig 3.1a), while others were supported at midheight by gusset plates
welded to the flat side walls or corners of the tube (Fig 3.1b, ¢). Still others were
supported on thick steel plates welded flat to the sides of the tube (Fig 3.1d).

Published results include tabulated values of bond strength as well as graphs of
load verses slip, and of strain measurements at various points along the steel tube. The
test results again show a nearly rigid-perfectly-plastic load-slip relationship for the
specimens with no mechanical shear connectors. The most significant result, however, is
the dramatic change in bond strength observed for various support conditions. The
rectangular specimens supported at their base gave an average bond strength of 0.2 MPa,
while the specimens supported through gusset plates had bond strength values ranging
from 0.76 to 1.06 MPa. The specimens supported through thick steel plates had an
average bond strength of 0.44 MPa. The specimens were cut open to observe the
concrete core, revealing abrasion marks near the top of the gussets for the specimens
supported on gusset connections. This suggests that a localized mechanism develops at
these connections characterized by a high normal force which develops near the base of
the gusset due to rotation of the tube walls. This phenomenon is discussed further in
Section 3.1.2. These results also suggest that standard push-out tests (Fig. 3.1a) may not
produce values that are representative of the slip stiffness or bond strength which exists in

the region around gusset plate connections.

Shakir-Khalil and Hassan (1994a):
Shakir-Khalil and Hassan (1994a) presented the results of 52 push-out tests on

rectangular CFT specimens. Bolts or threaded bars of various lengths and configurations
were used in some of the specimens as mechanical shear connectors. Many of the
specimens had no shear connectors but were included to study the effect of concrete
curing time, compressive strength, and mix proportions. These specimens were tested for

slip at 28, 56, and 84 days to study the effect of concrete shrinkage on bond strength. The
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various concrete mixes contained low, medium, and high cement content which was
expected to affect both the compressive strength and shrinkage of the specimens.
Published test results included graphs of load verses slip for the specimens with shear
connectors as well as some of the tests with no shear connectors. The load-slip curves for
the plain specimens again suggested a nearly rigid-perfectly-plastic relationship. The
measured bond strength was reported for all of the plain specimens. These results
indicated that cement content had a dramatic effect on the bond strength of specimens,
with low cement content specimens having a higher bond strength due to reduced
shrinkage. The bond strength showed significant scatter with values ranging from 0.146
MPa to 0.533 MPa. Age of testing had a smaller but measurable effect on the bond
strength of specimens, suggesting that continued shrinkage reduces bond strength over

time.

3.1.2 Connection Studies of Concrete-Filled Steel Tubes

Column connection tests which are instrumented to measure load transfer from
the steel tube to the concrete core or which are instrumented to measure slip provide an
alternative to push-out studies for determining bond strength and slip stiffness.
Connection tests represent a more realistic loading condition because they more closely
model the loading conditions and geometry which may induce slip in composite CFT
frames. In these tests, axial load is applied to both steel and concrete at the top of the
specimen and additional load is introduced through beam-to-column connections (figure
3.2). The axial load applied to the column represents loads from floors higher in the
structure, whereas the shear loads applied to the connections represent loads from the
floor framing into the connection.

Traditional connections to steel tubes are made by welding or bolting various
configurations of connection plates, angles, or tee-stubs to the sides of the tube.
Providing connections to the flanges of the beam (such as with plates or tee-stubs) is

thought to provide a fully-restrained connection. Often slip in the connection region of
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bolted connections is minimal since load is directly transferred to the concrete by the
connecting elements. If the connection is made only to the beam web, the connection is
considered to be a simple connection, providing little resistance to rotation. The
connection studies which provide insight into bond and slip have all been conducted on
simple connections made of either single gusset plates or tee-cleats welded to the outside

of the steel tube. Figure 3.3 shows these connection types.

Figure 3.2: Connection Test Experimental Setup
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Figure 3.3: Simple Connection Types (Dunberry et al., 1987)
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As mentioned earlier, the connection studies represent a more realistic loading
condition for CFT columns. For this reason, they will be used in lieu of push-out studies
to calibrate the current computational finite element model for interface slip. Following
is a description of several of the key experimental publications, some of which will be

used in the calibration.

Dunberry, et al. (1987):

Dunberry, et al. (1987) presented the results of 24 column tests on short, square
CFTs under pure axial load. In these experiments, some or all of the axial load was
applied through connections to the steel tube which do not penetrate the tube walls. In
addition, some of the axial load was applied to both materials at the top of the specimen
to simulate loads from the upper floors of a building. The connections to the steel tube
walls varied from single plate shear tabs to structural tee sections (see Fig. 3.3). This
series of tests is exceptionally useful because the specimens were instrumented with
demic points to measure slip in the region around the connection.

Detailed information was provided for one of the specimens about the measured
slip in the region around the connection. The authors noted a region above and below the
connection which lost bond prior to achieving the ultimate strength of the specimen. The
measured strain in the steel was plotted for the specimen at or near the failure load, and
the corresponding load in the steel and concrete were also presented. Graphic
comparisons were shown of the various connection types. Little difference can be seen
between the behavior of connections made with structural tees and those made with
gusset plates. The length of the connection region also has limited effect on the load
carrying capacity of the section.

An interesting comparison is made between two specimens with all parameters
held constant except that one specimen is capped to prevent slip at the top while the other
is not. The specimens achieve a similar ultimate capacity, but the measured load transfer
is significantly different. As expected, the concrete core of the uncapped specimen

gradually receives the load from the connection, with no load at the top and a maximum
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near the bottom of the connection, while some of the connection load is transferred
through bearing of the end plate at the top of the capped specimen. The data from this

publication is used for calibration and verification of the current computational model.

Shakir-Khalil (1993¢):

Results of experiments on 8 simple beam connections to rectangular CFT columns
are presented. The connections are made by welding single plate gussets to the walls of
the steel tube (see Fig. 3.3a). The experimental failure loads for the columns are
compared to the capacity predicted by the design recommendations of BS5400. In all
cases, the capacity of the column exceeds the code recommended capacity, suggesting
that the design recommendations may be overly conservative.

Failure of the specimens was found to be controlled by the eccentricity of the
beam loads. The four specimens which had a lower eccentricity of the applied load at the
shear tabs failed due to column instability after extensive material inelasticity and local
buckling had occurred. The four specimens with a larger eccentricity failed at the
connections, by tearing of the welds where the gusset plate connected to the steel tube
wall. It was found that a membrane mechanism developed when the tension end of the
connection pulled away from the concrete core due to rotation of the gusset plate. The
concrete core prevented the corners of the tube from moving toward each other. The
membrane forces combined with residual stresses from the welding process at the gusset-
to-steel tube interface caused material failure on the tension side of the connection.
Residual stresses from the seam weld in the cold-formed steel tube may have also
contributed to the local material failure.

Strain measurements were reported along the height of the specimen for the
loading history. These measurements showed that the beam shear force was transferred
to the concrete core over a short distance above and below the connection plate. The
author suggests that the transfer distance above and below the plate is no more than the
depth of the column. Examination of the strain plots show a nonlinear load-strain

relationship during the test. The nonlinear straining becomes more pronounced as the test
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progresses, indicating either loss of bond or materially nonlinear behavior. Because of
the localized materially nonlinear behavior and the experimentally observed local
buckling at the connection, the results from this publication are not used in the calibration

of the current computational model.

Shakir-Khalil (1994b):

Results of experiments on 8 simple beam connections to rectangular CFT columns
are presented. The columns have similar dimensions and geometry to the series of test
presented in Shakir-Khalil (1993c). This series of tests, however studies connections that
are made by welding tee-cleats to the tube walls (see Fig. 3.1b). The experimental failure
loads for the columns are compared to the capacity predicted by the design
recommendations of BS5400. In all cases, the capacity of the column exceeds the code
recommended capacity, suggesting that the design recommendations may be overly
conservative.

The observed mode of failure is column instability, which occurs only after
significant material yielding reduces the rigidity of the section. Large forces were
observed in the lateral bracing after yielding had occurred, indicating that materially
nonlinear behavior resulted in a non-symmetric 'section. In no case did the connection
limit the capacity of the column. The yield-line mechanism hypothesized for the tee cleat
was accompanied by membrane action, as the concrete core prevented the corners of the
tube from moving inward. The resulting behavior was a combination of membrane action
leading to a yield-line mechanism, in which a gap formed between the tee cleat and the
tube wall at the tension side of the connection. The author also suggests that the pinching
effect caused by membrane action provides a key mechanism in the transfer of beam
shear to the concrete core. Shakir-Khalil and Al-Rawdan (1996) confirm this mechanism
through three-dimensional finite element computational modeling of the connection
region. This mechanism provides both a higher resistance to slip and a higher bond

strength in the connection regions than the traditional push-out studies indicate.
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The results reported in the publication includes graphs of steel strain measured
throughout the height of the column at various load levels. The strain measurements near
the connection show erratic values due to rotation of the connection plates, local buckling
of the tube walls below the connection, and other localized effects. Other strain
measurements above and below the connection region provide useful information,
however, especially for the load levels below which a linear load-strain relationship is
seen. The strain measurements presented will be used to calibrate the slip and bond
parameters of the current computational model. In particular, the steel strains will be

used to calibrate the slip stiffness prior to loss of bond.
3.1.3 Flexural Studies of Concrete-Filled Steel Tubes

A study of bond and slip due to flexure is presented by Lu and Kennedy (1994).
This is the only test program found in the literature which presents extensive slip
measurements taken during flexural loading of square or rectangular CFTs. As such, the

effect of slip and bond loss due to flexure remains a matter of debate.

Lu and Kennedy (1994)

Lu and Kennedy (1994) presented the results of 12 flexural tests on rectangular
and square CFTs. The test program included four different tubular cross-sections which
were oriented so that bending was induced in either the strong or weak axis. The
specimens were simply supported at the ends and were loaded symmetrically at two
points, resulting in a constant moment region in the middle of the span. Various shear
span-to-depth ratios were used to investigate the effect of shear transfer length on
strength, ductility and slip.

The specimens were instrumented to detect slip at a number of points along the
length and through the depth of the specimen. The instrumentation consisted of demic
points in the concrete which were visible through round holes drilled in the steel tube. At

the ends of the specimen, LVDTs were used to measure relative movement between the
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steel and concrete. Strain gages were also used to track the strain in the steel tube and to
determine the strain distribution and position of the neutral axis at various cross-sections.

Four supplementary tests were conducted on hollow steel sections for comparison
to the CFT tests. The comparison showed an increase in both flexural strength and
stiffness when concrete was added to the core of the tube section. The local buckling
which terminated the tests on bare steel tubes was delayed significantly in the CFT
sections. A marked increase in ductility was also noted.

The slip measured for various moments is presented for one of the flexural
specimens. The graph shows that a slip of less than 0.2 mm was detected at 90% of the
ultimate moment of the section. After this point, the slip at the ends increases, but is also
accompanied by local buckling in the compression flange of the tube in the constant
moment region. The interaction between slip and local buckling is not investigated. The
measured slip at ultimate moment is presented for all the specimens. The maximum slip
detected in any specimen is 3.9 mm, but the authors comment that this reading may be
erroneous. Most specimens have a maximum slip at the ends of 1.0 mm or less. The
results from this publication are used to verify the calibrated parameters for the current

computational model.
3.1.4 Discussion of Experimental Literature

Several conclusions may be drawn from the published experimental research on
bond and slip. First, even though push-out studies are the most numerous tests available,
they do not accurately represent the bond strength of actual CFTs, especially at simple
beam-to-column connections. For this reason, they are eliminated from consideration for
the purpose of calibrating the bond strength parameter of the current computational
model. Similarly, they may under-represent the initial slip stiffness of the steel concrete
interface. They do, however, provide insight into the shape of the load-slip relationship
at the steel-concrete interface. Second, the bond strength at simple beam-to-column

connections of rectangular CFTs to wide-flange beams which have no shear connectors
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and no surface treatment to prohibit or promote bond is seen to be higher than the design
recommendations of AlJ or BS5400. Finally, local distortions should be expected to
occur in and around the connection plates and steel tube walls at such connections. The
rotation of the connection and the resulting pinching effect often improves the bond
strength and slip stiffness at these connections. The connection studies of Dunberry et al.
(1987) and Shakir-Khalil (1994b) will be used to calibrate the current computational

formulation for slip.

3.2 Experimentally Observed Load-Slip Behavior

The push-out tests of Shakir-Khalil (1993a, b) and Shakir-Khalil and Hassan
(1994a) provide the best insight into the shape of the load-slip behavior of rectangular
CFT sections. Shakir-Khalil was the only researcher who provided graphs of the load-
slip data for push-out tests he conducted. These graphs indicate a bilinear relationship

(Fig. 3.4).

AN experimental
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Figure 3.4: Bilinear Load-Slip Relationship
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The initial load-slip stiffness (k,, ) of the interface is very high, and may vary due

slip
to the experimental measuring schemes used in the push-out studies. For example,
measurement of slip as the relative position of the loading platen to the top of the
specimen in a push-out test may give a different load-slip relationship than a measuring
scheme where demic points in the concrete are observed through holes drilled in the steel
tube walls. Localized crushing of the concrete under the loading platen or gradual contact
of the concrete core with the irregularities in the steel section may be the major sources of
experimentally observed slip before loss of bond occurs. In many of the publications, the
scale of the plotted graphs prohibits accurate determination of the exact load-slip
relationship, and a straight-line approximation of the initial slip stiffness may result in
significant error from the actual data points.

In all the published load-slip graphs from push-out studies, the initial slip stiffness

is very high. In fact, there may be essentially no slip before loss of bond occurs,

suggesting that &, is infinite. The current computational model is capable of capturing
slip p p

the full range of behavior including perfect bond, and the calibration of the computational
model in the following section will provide further insight into the most appropriate value

for kg, -

The specimens tend to lose the initial stiffness suddenly, at a point which
corresponds to the bond strength of the interface (f,,,,). Some of the load-slip graphs
show a sudden loss of load capacity after the bond strength is achieved. The upper limit
point is traditionally reported as the bond strength, but the lower limit point more closely
represents the bilinear load-slip behavior which is used in the computational model.
These limit points are shown in Fig. 3.4.

A very low stiffness is observed after the interface bond breaks down. Depending
on the scale of the graph, this stiffness is nearly zero. Some of the graphs also indicate a
slight negative slope in this region.

An elastic-plastic load-slip relationship is adopted for the current computational

slip model (the flat portion of the load-slip relationship is assigned a slope near zero).
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This model requires only two parameters, the initial stiffness of the steel-concrete
interface and the bond strength. The experimental data provided by Dunberry et al.
(198"‘7), Shakir-Khalil (1994b), and Lu and Kennedy (1994) will be used to calibrate and
verify the slip stiffness parameters for the current analytical model. The calibration and

verification are presented in the Sections 3.4 and 3.5 respectively.

3.3 Capability and Limitations of the Computational Slip Model

3.3.1 Axial Load Transfer at Connections

The current computational model presented in Chapter 2 was developed to study
the effect of slip on the overall behavior of CFTs, including individual members and CFT
composite frames. The most promising capability of the formulation is simulation of
gradual axial load transfer from the steel tube to the concrete core at beam-to-column
connections. When no mechanical shear connectors are provided, this load transfer relies
on bond and the keying action caused by geometric imperfections in the tube walls
(Grauers, 1993).

An example of the gradual transfer of load from the steel to the concrete based on
the current computational model is shown in Figure 3.5. This example is intended to be
similar to the connection studies published by Dunberry et al. (1987) and Shakir-Khalil
(1993c, 1994b), and Shakir-Khalil and Al-Rawdan (1995), except that slip is allowed at
the top of the column, and all the axial load is applied through the beam-to-column
connection (i.e., the steel tube and concrete core are free to move at the top and f = 0.0 in
Fig. 3.2). The bond strength of the interface is assumed to be infinite, and all materials
are assumed to be linear elastic. The axial rigidity of the concrete core and the steel tube
are assumed to be equal. Geometric nonlinearity is not accounted for. 10 elements are
used along the length of the column, with the load applied at the node corresponding to
the middle of the connection. The figure demonstrates the effect of varying the slip
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stiffness. As kg, is increased, the concrete participates more fully in the load carrying

capacity of the member. Note that for the highest value of % the steel and concrete

slip
carry an equal portion of the applied load at the bottom of the column. For this case, the
gradual transfer of load to the concrete core (P¢) over the height of the column can be

clearly seen.

e slip allowed at top

k=10 MPa k;10° MPa k10’ MPa |, =10" MPa
i t
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Figure 3.5: Gradual Load Transfer at Beam-to-Column Connections

The example above demonstrates the potential importance of the relative value of
the slip stiffness on both the strength and stiffness of CFT members in the computational
model. The formulation must therefore be able to capture any slip stiffness ranging from
perfect bond to perfect slip. This capability is tested through a second example of an
axially loaded column. The rigidity of the member is examined by considering the load-

deformation behavior. The deflection of a homogeneous elastic column under pure axial

load is given by:
PL

A== 3.1
A (3.1
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For a CFT with slip between the steel and concrete, the applied load must be
distributed to both materials according to the proportion of rigidity for each component.
Complete transfer at a loading point (perfect bond) may be achieved in experiments
through loading plates or capping of the ends of the test specimen. For these cases, the

rigidity of the column is given by:
EA=FEA® + EA° ‘ (3.2)

Alternately, if only the steel tube is loaded and perfect slip is allowed, the rigidity
of the column is simply the rigidity of the steel tube alone. For this case, the rigidity of

the column is given by:

EA=EA* (3.3)

In a real structure where load is introduced at connections to the steel tube only
(such as the previous example), the load transfer occurs over a finite region. The
"apparent" rigidity of the CFT column (based on the measured deflection of the loading
point) will always lie somewhere between perfect bond (Eq. 3.2) and perfect slip (Eq.
3.3).

Figure 3.6 shows the computational model used to test the variation in rigidity of

the axially loaded CFT element with slip for various values of k;, . In this example, the

springs which make up the slip layer are assumed to have infinite bond strength, and thus
a constant slip stiffness. The load is applied to the steel only at the top of the element.
Geometrically and materially nonlinear behavior are neglected.

The apparent axial rigidity of the column is calculated by solving Eq. 3.1 for the
term EA. Figure 3.7 shows the variation of apparent axial rigidity for values of slip
stiffness which range from perfect bond to perfect slip. This figure demonstrates the

ability of the current analysis to model a range of slip behavior. Note that in this example
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as well as the previous one, a 10,000 MPa slip stiffness effectively prevents slip in the
element, while a 0.1 MPa slip stiffness provides practically no interaction between the

two materials.
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Figure 3.6: Axially Loaded Column Example
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Figure 3.7: Apparent Rigidity of Axially Loaded Column
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3.3.2 Slip Due to Flexure

A second application is slip caused by composite beam action during flexure.
This mechanism is triggered by cracking of the concrete core in tension which results in
an unsymmetric section (similar to a composite beam). The eccentricity of the uncracked
concrete section with respect to the steel section causes longitudinal stress to develop in
the materials under pure flexural loading. The CFT flexural tests performed by Lu and
Kennedy (1994) validate this mechanism. Figure 3.8 shows a CFT member subjected to

pure flexure, and the resulting unsymmetric section.

uncracked concrete

cracked concrete
N concrete neutral axis. R
R steel neutral axis o j|> eccentricity

Figure 3.8: Unsymmetric Section Caused by Concrete Cracking
Slip tends to reduce the flexural rigidity of a CFT subjected to pure bending after

cracking occurs in the concrete in tension because part of the longitudinal stress which

the concrete is required to carry under perfect bond conditions is lost due to slip. For
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perfect bond conditions, plane sections are assumed to remain plane and therefore the
concrete is more effective in the compression zone of the beam element.

An example showing the effect of slip stiffness on the flexural rigidity of a CFT
beam member is not presented at this point because material inelasticity (concrete
cracking) is required in order to induce slip. The effect of slip during pure flexural
testing is discussed in Section 3.5 when the calibrated parameters are used in the

computational model for comparison to the experimental results of Lu and Kennedy

(1994).

3.3.3 Computational Limitations of the Slip Model

The current computational formulation includes several simplifications and
limitations. First, the bilinear load-slip relationship may not be representative of all load
transfer situations which occur in CFTs. However, this relationship is believed to be the
most accurate representation for the current formulation based on the available
experimental results. Also, the slip which is caused by flexure has not been extensively
documented and it is unclear whether the load-slip curve for this type of loading is
represented by the bilinear model.

A second limitation of the computational formulation is that shear stress caused
by shear deformation is not modeled. The only slip which is allowed is a uniform axial
slip between the steel and concrete portions of the element. It is unclear whether shear
deformations would induce significant slip at the steel-concrete interface. Lu and
Kennedy (1994) attempted to investigate this phenomenon by varying the shear span-to-
depth in their flexural tests. The test results indicated that the ratio had a negligible effect
on the slip behavior of the beams, but more investigation is warranted.

Third, the effects on slip and bond due to tension or compression normal to the
tube wall, as may occur in a connection region, are not accounted for directly. However,

they are accounted for to some extent implicitly in the calibration.
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3.4 Calibration of Computational Slip Parameters

The load-slip behavior of rectangular CFTs depends on a large number of
parameters, including concrete mix proportions, internal tube surface treatment,
geometric imperfections, presence of mechanical shear connectors, and loading
conditions at connections. The computational formulation developed in Chapter 2 is
general, and is accurate for any set of parameters provided that calibration and
verification can be accomplished. In order to limit the scope of the current work, the slip
model is developed for the computational parameters which are believed to be the most
common in modern construction practice for structures using CFTs as beam-columns.

For the current computational calibration, it is assumed that no mechanical
connectors are used to improve the bond strerigth or load-slip behavior. In addition, it is
assumed that the concrete is cast in the steel tube without any bond inhibiting or
promoting schemes, and with no special surface treatment of the inner walls of the steel
tube. The concrete mix proportions are assumed to be standard, that is to say, there is no
attempt to alter the mix proportions to limit or promote shrinkage.

These conditions are similar to the available set of experimental tests by Dunberry
et al. (1987), Shakir-Khalil (1993c, 1994b), and Shakir-Khalil and Al-Rawdan (1995),
which are used for parametric calibration in the following sections. It is important to note
that the publications used for calibration are all connection studies rather than push-out
studies since the connection studies provide a more realistic representation of the slip
behavior. Therefore, the pinching effect and other effects localized to connection regions
may affect the calibration. This is acceptable for a number of reasons. First, connection
regions are the only locations in CFT composite frame structures where slip is expected.
Even though the flexural tests of Lu and Kennedy (1994) showed loss of bond, this
behavior was not observed until the limit point of the beams was reached and was
accompanied by extensive local buckling of the tube walls. In addition, CFTs are not
commonly used as simple beams or under pure flexure with open ends and short shear

span-to-depth ratios. Second, there is strong experimental evidence, including push-out
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test results (Shakir-Khalil, 1993a, b; Shakir-Khalil and Hassan, 1994a) and connection test
results (Dunberry et al., 1987), that slip which occurs before loss of bond is only
coincidental and may be the result of experimental apparatus or slip measuring schemes.
There is very little slip in any region under any loading condition prior to loss of bond. It
will be seen in the following section that the experimentally observed initial slip stiffness is
high enough to essentially be considered perfect bond in the computational slip model (see
the example of perfect bond in section 3.3.1), and that the values of initial slip stiffness
from push-out tests are far below the values which produce acceptable results for the

calibration examples.

3.4.1 Calibration of Initial Slip Stiffness

The load-slip graphs presented by Shakir-Khalil (1993a, b) and Shakir-Khalil and
Hassan (1994a) for push-out studies give the first indication of the initial slip stiffness in
rectangular CFTs. Table 3.1 below shows the approximate initial slip stiffness for the
push-out studies on plain specimens. The nomenclature in column one is from the original
publications. The table includes all types of support conditions (which are indicated in the

right hand column according to Fig 3.1). The initial slip stiffness, &, , values are -

lip>
obtained by dividing the initial slope of the load-slip curve by the length of the slip
interface.

Table 3.1: Initial Slip Stiffness Values from Experimental Tests (Shakir-Khalil, 1993a, b)

Specimen Length (mm) | Perimeter (mm) | Approximate k, Test setup
(MPa) (Fig 3.1)
Data from Shakir-Khalil (1993a)
Alb 400 560 250 a
Clb 400 560 1000 b
C2b 400 560 1000 c
Elb 400 750 1170 b
Gl 400 560 420 d
Data from Shakir-Khalil (1993b)
X1b 396 360 1010 a
Y3a, b 600 560 333 a
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The initial slip stiffness ranges from 250 MPa to 1170 MPa. It is interesting to
note that the specimens which were supported on connections using gusset plates
generally have a higher initial stiffness than the standard push-out tests, with the
exception of the specimens in series “X”. Because of the scale of many of the published
graphs, it is difficult to discern the slope of the initial load-slip graph, and the actual slip
stiffness in all cases may well be higher than that reported in Table 3.1.

This data gives an indication of the stiffness of the interface prior to loss of bond
in push-out studies. Thus, the strain measurements from the connection studies of

Shakir-Khalil (1994b) will be used to test values of &, that range from 10’ MPa and up,

slip
and the range will be adjusted until agreement is achieved between the computational and
the experimental results.

The experiment which provides the most data for calibration of initial slip
stiffness is presented by Shakir-Khalil (1994b). In this publication, strain measurements
at a number of positions along the height of the specimen are presented as a function of
applied load. This data provides information in the materially elastic range on the
transfer of load from the steel to the concrete in the region above and below the
connection. Because the material is elastic in this range, the slip behavior can be
decoupled from the materially nonlinear behavior.

Figure 3.9 presents the experimental setup for specimen E6, including the
instrumentation and location of strain gages, and the experimental parameters provided
by the author (Shakir-Khalil, 1994b). The test specimens were constructed from
150x150x5 square structural tubing with tee-cleat connections. The tee-cleats were
welded to the steel tube along the edges of the flanges, but not along the top or bottom of
the connection. The connection load was applied upward, with the connection load and
the load at the base of the column being increased in the same proportion. The strain

measurements have been reproduced from the original set of figures and are shown in

Fig. 3.10.
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Figure 3.9: Experimental Connection Test Setup (Shakir-Khalil, 1994b, Specimen E6)
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Figure 3.10: Experimental Strain Measurements (Shakir-Khalil, 1994b, Specimen E6)
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The computational model was run with varying initial slip layer stiffness’ in order -
to match the strain readings of Fig. 3.10. In the computational model, a node is assigned
at each of the strain gage positions shown in Fig. 3.9, as well as at the top and bottom of
the specimen. The load applied at the connection is split between the nodes corresponding

to gages 5, 6, and 7 in the ratio of 25% - 50% - 25% to simulate the transfer of load along

the connection plate. In addition, the experimentally observed concrete elastic modulus is

used in the analysis rather than the empirical equation used in the concrete constitutive

model so as to better match the elastic behavior of the test. The constitutive model
utilizes the empirical equation: E, =3300,/f", + 6900 (in MPa) (Carrasquillo et al.,
1981).

The first comparison is made at a level of applied load, P, corresponding to 600
kN. Fig 3.11 shows the prediction of the strain in the steel verses the height along the
specimen for the computational model and the experiment. The introduction of the
connection load to the steel tube in the connection region is clearly seen, along with a
localized strain concentration below the connection. This strain concentration is partially
due to slip, but is also due to membrane action in the tube wall. The strain measurements
of gages 1, 2, and 3 above the connection show that the majority of load is transferred to
the concrete in the connection region (since the strain differs little between these three

gages), a trend which is only matched well by the highest of the k. values. Note that the

slip

value for k,, of 10’ MPa (i.e., representative of the push-out studies) produces a strain

slip
diagram that over-predicts the length of the load-transfer region (as seen by the gradually
sloping data from the computational model).

Table 3.2 shows an analysis of the results including a tabulation of the percent
error between the computed and experimental strains. The analysis is presented for all the

data points, and then for the data corresponding to gages 1, 2, 3, and 10, which are

farthest from the connection region.
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Figure 3.11: Strain Comparison at Total Load of 600 kN

numerical instability even with &k

The computational model matches the experimental strain measurements well at
this load level. There is no clear pattern to the results, however, as the lowest value of slip
stiffness provides the lowest average percent error, but has the highest standard deviation.

All values of &, produce approximately the same average percent error, between 6% and

7%, and the highest value of slip stiffness produces the lowest standard deviation, again

indicating a better match to the shape of the strain distribution. The highest values of k

which match the load transfer region with more accuracy, are in the range that correspond
to perfect bond (see the example problem in Section 3.3.1), suggesting that the portions of
the specimen outside the load transfer region may experience little or no slip at this level

of loading. It is important to note that the computational model did not encounter

=10° MPa.

slip
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Table 3.2: Comparison of Experimental and Computational Results for
(Shakir-Khalil, 1994b, Specimen E6, P=600 kN)

% error of ¢*
Gage Number ksh.p = k_,,,.p = ksh.p = k‘\,lip =
10° MPa 10* MPa 5x10° MPa | " 10’ MPa

1 4.93 4.55 3.80 0.44

2 493 3.80 2.87 -0.86

3 493 2.31 1.00 -2.37

4 -3.67 -7.73 -9.36 -13.0

5 -23.0 -26.3 -27.9 -31.2

6 -63.2 -63.2 -63.2 -63.2

7 -12.5 -8.72 -6.82 -2.74

8 11.8 16.9 18.9 23.3

9 7.19 10.8 12.9 18.0

10 2.43 4.06 5.69 11.1

All mean -6.62 -6.34 -6.21 -6.07
Gages std dev. 21.3 22.1 22.6 24.0
Gages mean 4.30 3.68 3.34 1.99
1,2,3,10 std dev. 1.08 0.84 1.69 5.39

A second comparison is made to the same experimental specimen for a higher load

level corresponding to a total load of 800 kN. Figure 3.12 shows the computational

results for various values of k, compared to the experimentally observed data points.

slip
Table 3.3 presents an analysis of this data. The data shows a similar pattern to the

results of Table 3.2. The values of k;, which provide the best average percent error

slip
again have the highest standard deviation. However, examination of the shape of the
graphs again indicates that the highest values of initial slip stiffness give a better prediction
of the length over which load transfer takes place. The lower values over-predict the

length of the load transfer region.
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Figure 3.12: Strain Comparison at Total Load of 800 kN

Shakir-Khalil (1994b) also publishes strain readings from a second specimen, E8,
which has the same dimensions and strain gage positions as specimen E6 (see Fig. 3.9),

but a slightly higher concrete compressive strength ( f', =325 MPa, E, =36.7 GPa).

Only four gages (7-10) are reported. The published strain gage readings are reproduced in
Figure 3.13. Gage 7 is clearly reading a localized anomaly associated with connection
behavior (seen from its nonlinear shape and low strain values during the early stages of
loading) and will be discarded from the current calibration.

The computational slip model is used to predict the strain in the steel tube at the
levels of the strain gages. Figure 3.14 shows the comparison of the computational model

to the experimental data points. An analysis of the results is shown in Table 3.4.
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Table 3.3: Comparison of Experimental and Computational Results for
(Shakir-Khalil,1994b, Specimen E6, P=800 kN)

% error of €
Gage Number k slip = kslip = k.\‘lip = kslip =
10° MPa 10* MPa 5x10° MPa 10’ MPa
1 10.07 9.68 0.16 6.31
2 10.07 0.29 8.38 5.15
3 12.26 11.5 10.6 7.46
4 3.94 0.62 -0.76 -3.94
5 -22.6 -25.5 -27.0 -30.1
6 -61.6 -61.8 -61.8 -61.8
7 -18.5 -14.5 -12.8 -8.76
8 13.2 18.1 19.7 24.0
9 9.99 13.3 15.0 19.9
10 4.99 6.56 7.94 13.0
All mean -3.81 -3.27 -3.16 -2.88
Gages std dev. 22.7 23.3 23.6 24.5
Gages mean 9.35 9.26 9.03 7.99
1,2,3,10 std dev. 2.67 1.77 1.02 3.03 .
1600
12007
—+——gage 7
Load iaie 3
(kN)
800 —*—gage9
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400
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Figure 3.13: Experimental Strain Measurements (Shakir-Khalil, 1994b, Specimen ES8)
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Figure 3.14: Strain Comparison at Total Load of 600 kN
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Table 3.4: Comparison of Experimental and Computational Results for
(Shakir-Khalil, 1994b, Specimen E8, P = 600 kN)

% error of ¢

Gage Number kg, = kg, = k., = kg, =
10° MPa 10* MPa 5x10° MPa 10° MPa
8 36.6 40.9 42.4 46.2
9 31.6 34.8 36.4 40.6
10 1.15 3.18 4.93 11.3
All mean 23.1 26.3 27.9 32.7
Gages std dev. 15.7 16.5 16.4 15.3

The data analysis shows that the highest value for initial slip stiffness results in

the lowest average percent error. The average error and standard deviation in this set
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of results is significant due to the apparent shift between the computational and
experimental results. The shift in results is due in part to the load application scheme
(25-50-25% in the connection region), and could be reduced by varying this scheme.
Note however that the shift in results for specimen E6 was in the opposite direction from
the current example, suggesting that this is a random phenomenon and may be caused by
localized straining such as connection rotation or local buckles forming in the tube walls.

The strain is not predicted well in the region close to the connection, but the rate
of load transfer is seen to be consistent with the experimental results. The computational
results farthest from the connection compare well with the experimental data point for
gage 10. The highest value of initial slip stiffness gives an error of 1.15%. The overall
straining of the column, including magnitude of the strain and shape of the strain
distribution along the specimen length is predicted well by the computational model.

The comparisons presented in this section show evidence that the value of &,
from the push-out studies (103 MPa) over-predicts the length of the load transfer region
around connections. The experimental results from this set of tests, as well as the
observations of other researchers (Dunberry et al., 1987), suggests that there is little or no
slip outside the load transfer region, especially in the initial stages of loading. This

condition is only predicted accurately by the highest values of &, . The value of

slip *

k. = 10° MPa was seen to consistently provide an accurate prediction of the load

slip
transfer region as well as accurately predicting straining levels. However, both 10* and
10® MPa lie within the range that can be considered nearly perfect bond (before bond
strength is reached) in the computational model (see Section 3.3.1). The value of slip
stiffness of 10* MPa provides the best balance of mean error and standard deviation in the

results. Consequently, the value of initial slip stiffness for the current computational

model is chosen to be k,, =10* MPa. The experimental data and comparison to the

slip
computational model shows that very little slip occurs before the bond strength of the
steel-concrete interface is reached. Some gradual transfer of load does occur, however,

within a short distance above and below the connection region as indicated by the
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localized strain concentrations in both the experimental data and computational results.
The computational slip model is required in order to model this localized strain
concentration. It will be seen in the following sections that loss of bond aggravates the

localized straining in the connection region.
3.4.2 Calibration of Bond Strength

As mentioned previously, push-out studies are not representative of the bond
strength at simple beam-to-column connections due to the pinching action caused by
connection rotation. One series of push-out tests by Shakir-Khalil (1993a) which were
supported on shear tab connections had an average bond strength of 0.97 MPa while
another series of specimens having the same connections but larger tube dimensions
failed to reach the predicted bond stress of 0.4 MPa. This data suggests that push-out
studies are not a reliable method of determining the bond strength at a beam-to-column
connection.

In order to study bond strengfh, connection specimens from Dunberry et al. (1987)
are utilized. A much higher percentage of the total load is applied at the connections for
this series of tests compared to Shakir-Khalil (1994b). This creates more slip and bond
loss and provides a better indication of the bond strength at these connections. Dunberry
et al. (1987) present graphs of the experimentally measured slip, strain, and total load in
the steel and concrete at a load level near the limit point of the column. These graphs are
utilized in calibrating the bond strength of the steel-concrete interface for the current
computational model. Note that material nonlinearity in the steel and concrete contribute
significantly to the straining of the specimens near their ultimate loads for the example
problems in this section. As comparisons with the computational model are made near
the ultimate strength of the member, by necessity the materially nonlinear portions of the
computational model play a signiﬁcant role in the results of the calibration of bond

strength (see Chapter 4 for a description of the material constitutive models).
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Specimen D1 from Dunberry et al. (1987) is presented in the most thorough
fashion and will be used for the initial calibration of bond strength. Figure 3.15 shows the
experimental setup and test parameters. The loads in this series of tests are applied
downward rather than upward as in Shakir-Khalil (1994b). A detailed description of the
strain gage locations is not provided by the authors, but the specimens were instrumented
to measure steel strain with strain gages, and concrete strain as well as slip with demic
points which were visible through holes in the steel tube walls.

The computational model is implemented for comparison to the published slip at
various locations along the stee] tube for a given load level. The computational model
uses 11 elements, with the loading applied to the top, middle, and bottom of the
connection region in a ratio of 20-20-60% to simulate the gradual transfer of load in this
region. This loading scheme is different than the one used in the previous section since
this loading pattern better reflects the load transfer seen in this specific experiment. The
loading scheme used in the previous section is also presented later so as to demonstrate
the effect that the loading pattern has on the accuracy of the computational results for this
type of connection. The initial slip stiffness from the calibration of the previous section
(k

stip = 10* MPa) is used far all computational results in the bond calibration.

This test used the same nominal tube size and had approximately the same material
properties as the Shakir-Khalil (1994b) specimens E6 and E8, which were used for
calibration of initial slip stiffness. The initial elastic modulus of the concrete was not
reported and the value predicted by the empirical equation implemented in the concrete
constitutive model (Molodan and Hajjar, 1997) had to be adjusted to match the
experimental rigidity of the column. The elastic modulus predicted by the empirical
equation resulted in the concrete carrying a disproportionate amount of the load compared
to the experimental results. The concrete modulus was reduced until agreement was
reached between the predicted and experimentally observed concrete rigidity. The
resulting concrete modulus was 19.3 GPa (0.77 of the value predicted by the empirical

equation).
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Figure 3.15: Experimental Setup of (Dunberry et al., 1987, Specimen D1)

Figure 3.16 shows the comparison of the computational model to the published
experimental results at a load level of 1560 kN for various values of bond strength. Slip
between the concrete core and the steel tube is shown at points along the length of the
steel tube. Table 3.5 presents an analysis of the data.

The computational model predicts the shape and magnitude of the slip along the
column with better accuracy below the connection than above it. This phenomenon can
again be attributed to connection rotation and the resulting pinching mechanism which
results. The high average percent error in Table 3.5 is the result of the very low values of
experimental slip which are in the denominator of the percent error equation for the data
points outside the load transfer region. Rather than use the average percent error for the
entire length of the member, a better indication of the accuracy of the computational

model can be seen in the last row of the table where the maximum computed slip is
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compared to the experimentally observed value. The value of f, , =0.6 MPa provides

the most accurate prediction of maximum slip with an error of 2.5%.
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» Experiment (Dunberry et al.,
1987, Specimen D1)
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Figure 3.16: Measured Verses Computed Slip (Dunberry et al., 1987, Specimen D1)

Table 3.5: Comparison of Experimental and Computational Results for

(Dunberry et al., 1987, Specimen D1)

Soona 0.4 MPa 0.5 MPa 0.6 MPa 0.8 MPa 1.0 MPa
average % -362 -183 -93.9 -79.7 -65.3
error
std. dev. 388 235 164 160 156
max slip (mm) 0.157 0.118 0.0914 0.0834 0.0750
Yerror max -75.6 -31.9 -2.50 6.55 15.9

slip

95




The loading scheme used in the computational formulation also affects the
accuracy of the results. For example, Fig. 3.17 shows the computed verses measured slip

which results when a loading scheme of 25-50-25% is used in the connection region.

connection

region —\

« Experiment (Dunberry et al.,
1987, Specimen D1)

— Analysis, fi,,s = 0.4 MPa
——— Analysis, f;,,;,= 0.5 MPa
...... Analysis, fy,,0 = 0.6 MPa
—.—. Analysis, f;,,,= 0.7 MPa
—..— Analysis, f;,,, = 0.8 MPa

e
0 0.05 0.1 0.15

Slip (mm)
Figure 3.17: Measured Verses Computed Slip for Alternate Computational Loading
(Dunberry et al., 1987, Specimen D1)

The magnitude of the analysis results along the length of the member become less
accurate than the scheme used in the previous example, although the shapes of the
analysis graphs show good correlation with the experiments.

The distribution of load between the steel and concrete portions of specimen D1

along the length of the column is presented by Dunberry et al. (1987) for a load level
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slightly below the ultimate load of the column. The total load in the specimen, and the
proportion applied at the connection, can be calculated by adding the steel and concrete
loads at various points along the length. The published experimental graph indicates that
the total applied loads are 680 kN at the top of the specimen and 880 kN at the
connection. This data contradicts the tabulated values of Dunberry et al. (1987), which
state that 50% of the total load is applied at the connection, and that the total load
graphed is 1622 kN. In order to compare to the published results, however, the loads are
assumed to be those which are computed by summing the steel and concrete loads in the
published experimental graph.

Figure 3.18 shows the comparison between the published results and the prediction
of the computational model for various values of bond strength. Table 3.6 gives an
analysis of the results. A bond strength of 1.0 MPa produces the best results when
compared to the experimental data. However, the other values presented show similar
percent error. A bond strength of 0.6 MPa gives acceptable results and matches the
maximum slip much better than the value of 1.0 MPa. Both of the higher values of bond
strength in the computational model match the overall shape of the load diagram more
accurately than the lowest value. This trend is especially apparent in the concrete load in
the region around the connection. The experimental data points suggest that all the load
transfer from the steel to the concrete occurs in the region indicated on the graph. Only
the highest values of bond strength result in a load transfer within this region, with the
lowest bond strength value showing transfer over a much larger region.

Based on the examples provided in this section, a bond strength of 0.6 MPa
provides the best correlation between experimental and computational results. This value
provides the best prediction of total slip, loss of bond around the connection region, and
transfer of load from the steel tube to the concrete core after loss of bond occurs. The
calibration has also shown that the computational model is more accurate for the region at
the compression end of a connection than the tension end because of localized behavior in

the experiments caused by connection rotation.
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Figure 3.18: Measured Verses Computed Load in the Steel and Concrete Portions of the

Column (Dunberry et al., 1987, Specimen D1)

Table 3.6: Comparison of Experimental and Computational Results for

(Dunberry et al., 1987, Specimen D1)

Srona 0.4 MPa 0.6 MPa 1.0 MPa
_ concrete load results
average % -9.85 -7.29 -6.86
error
std. dev. 12.4 5.98 . 4.67
steel load results
average % 12.2 10.5 10.2
error
std. dev. 14.7 14.2 13.7
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3.5 Verification Examples for Slip in Concrete-Filled Steel Tubes

The parameters of the computational slip model were calibrated in the previous
section. The values which provide the most accurate comparison to published

experimental test results are:

Srona =0.6 MPa
kg, =10° MPa

The experimental tests which documented slip most completely have been used in
the calibration studies. Several other published test results will be used for verification of
the calibrated slip parameters.

The series of tests conducted by Dunberry et al. (1987) included a specimen (C1)
which was loaded only at the connections, and had no cap or other means of preventing
slip at the top of the specimen. Figure 3.19 gives the experimental parameters for this
tests.

A plot of the experimentally observed load in the concrete over the height of the
column is presented for a given load of P = 608 kN. Figure 3.20 shows the comparison
of the computational model using the calibrated parameters to the experimental data
points. In this comparison, the concrete elastic modulus is reduced to 0.77 of the value
predicted by the empirical equation used by the computational model (as it was for
specimen D1) in order to match the experimentally observed load in the concrete. The
shape and magnitude of the load distribution is well predicted by the computational
model, with the load gradually entering the concrete core above the connection, and in a
region below the connection as well. The slight shift in the computational results may be

caused by the initial rigidity of the concrete being too stiff.
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Figure 3.19: Experimental Parameters from (Dunberry et al., 1987, Specimen C1)

A second verification example is provided to demonstrate the capability of the
computational formulation to predict the slip due to flexure in CFTs. This behavior is
caused by cracking of the concrete in tension which results in an unsymmetric section
similar to a composite beam. Lu and Kennedy (1994) present the results of flexural
testing of rectangular CFT's which were instrumented to detect slip, through the use of
LVDTs at the specimen ends. The experimentally observed slip was reported for
specimen CB33. The specimen was rectangular in section and was tested in major axis
bending. The beam had no end plates or other means of preventing slip along the
specimen. Figure 3.21 shows the experimental setup and gives a number of the material

parameters.
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Figure 3.20: Concrete Load in Uncapped Specimen

(Dunberry et al., 1987, Specimen C1)
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Figure 3.21: Experimental Parameters from (Lu and Kennedy, 1994, Specimen CB33)

Figure 3.22 shows the comparison between the experimentally observed slip and

the slip predicted by the computational model using the calibrated parameters. This

101



graph provides evidence that the calibration based on connection tests is accurate for other
types of loading situations as well. The maximum slip as well as the point where loss of

bond occurs are predicted well by the computational model.

04-+/ " Experimental (Lu and Kennedy, 1994,

Specimen CB33)
— Analysis
0.2 7
0 | | |
0 0.05 0.1 0.15
Slip (mm)

Figure 3.22: Measured Verses Predicted Slip in Flexural Specimen

(Lu and Kennedy, 1994, Specimen CB33)

This graph also provides evidence that the experimentally observed slip does not
occur purely as the result of local buckling. Rather, the local buckling may be partially the
result of loss of bond. This example also demonstrates that loss of bond can occur in
flexural specimens which do not have capped ends. This behavior would be mitigated by
capping the tube ends, or by using CFTs as flexural members which are continuously
connected through positive and negative moment regions. In such a structure, the regions

which do not experience loss of bond may prevent slip from occurring in other areas.
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Chapter 4

Nonlinear Material Models for Rectangular CFTs

The formulation for material nonlinear analysis using the fiber element approach
requires accurate and robust material models for both steel and concrete in order to

properly model the material nonlinear behavior of rectangular CFTs. White (1986) states:

Accuracy of the computed fiber stresses is essential for realistic modeling of local frame behavior
and for adequate force recovery in the iterative-incremental solution schemes.... Also, for correct
prediction of bifurcation behavior, and for speed of convergence using the iterative-incremental
schemes, it is desirable to obtain a realistic estimate of the global tangent stiffness. Thus, the
modeled material tangent modulus at cross-section fibers should closely represent that in the

actual structure.

The uniaxial constitutive relationships for the steel and concrete components of a
rectangular CFT which are required in the fiber element approach are in fact the result of a
number of multiaxial effects. These include residual stresses caused by cold-forming and -
welding (Sully and Hancock, 1994), local buckling of the steel tube walls, shrinkage or
expansion of the concrete during curing (Shakir-Khalil, 1993b; Tomii and Sakino, 1979a),
and confinement of the concrete core by the steel tube which causes tension in the steel
tube walls and compression in the concrete core. Consequently, in this research,
multiaxial stress-space plasticity formulations have been implemented to permit future
extension of the fiber element to directly account for multiaxial effects. In the current

work, only uniaxial stress-strain behavior is tracked, and multiaxial effects are accounted
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for implicitly through the calibration of the stress-strain curves. Time-dependent effects
such as aging of the steel or shrinkage and creep of the concrete are beyond the scope of
the current computational formulation.

This chapter briefly outlines the steel and concrete constitutive models adapted for
use with the fiber element formulation. The chapter is organized as follows. Section 4.1
describes the steel constitutive model. Emphasis is placed on describing the key features
of the model which most effect CFT behavior. Section 4.2 describes the concrete stress-
strain model. Characteristics of the model which are specific to modeling square and
rectangular CFT's are discussed, including the modification of the descending compression
branch of the stress-strain curve to account implicitly for confined. Section 4.3 outlines

the calibration of these models.

4.1 Steel Constitutive Model

The constitutive model used to predict the behavior of the steel tube in the current

CFT fiber element formulation dominates the computational results in many cases, since
the steel tube is often the major source of flexural, torsional, and axial rigidity and strength
in CFTs which are used as beam-columns in frame structures. For this reason, the steel
material model should be as comprehensive as possible, within the scope of the current
research. The current implementation includes a multi-surface cyclic plasticity formulation
developed by (Shen, 1993; Mamaghani et al., 1995; Shen et al., 1995). A brief description
of the model is provided here. Details of the modifications made to Shen’s model for
analysis of rectangular CFTs, and of the calibration to experimental results, can be found
in Hajjar et al. (1996e, f) and Molodan and Hajjar (1997) and are not repeated here.

- The steel constitutive model utilizes a bounding surface formulation in stress-
space. This plasticity formulation uses two nested surfaces, an inner loading surface and
an outer bounding surface. The inner loading surface represents the locus of stresses

which cause the initiation of yielding at the stress point (i.e., at the fiber). The outer
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surface represents the stress state at which a limiting stiffness of the steel fiber is achieved.
When the stress point lies within the loading surface, the material undergoes elastic
behavior. Once the stress point has contacted the loading surface, the response is
governed by a number of hardening rules which determine subsequent inelastic behavior.
As the steel fiber is loaded inelastically, both the loading and the bounding surfaces may
translate (kinematic hardening), or contract or expand (isotropic hardening), to model key
material phehomena. The plastic modulus of the fiber changes nonlinearly from infinity to
a limiting bounding value as the stress point moves from initial contact with the loading
surface to the bounding surface. The von Mises surface establishes the shape for both the
loading and bounding surfaces (Shen et al., 1995). The value of the plastic modulus is a
function of the distance between the two surfaces.

This steel model has several key features geared specifically to capturing
appropriate stress-strain behavior necessary for obtaining the CFT stress-resultant
behavior discussed in the previous section. Coupons taken from cold-formed steel tubes
usually do not exhibit a yield plateau, especially for the material in the corners of the tube,
due to the cold-working process (Sully and Hancock, 1994). Consequently, no yield
plateau is modeled in this work. In addition, the steel formulation unloads elastically until
the loading surface is recontacted. This behavior may occur in monotonically loaded
members under non-proportionally applied loading. The Bauschinger effect is also

captured well in this formulation, predominantly due to kinematic hardening of the loading

surface. This steel bounding surface model also achieves a limiting bounding value of the

plastic modulus once the stress point contacts the bounding surface, and this value of the
plastic modulus is retained until a load reversal occurs.

In addition to the above features, several of which were inherent to the Shen model
(Shen et al., 1995), the different stress-strain characteristics in the corners and flanges of
the steel tube are accounted for in this research. This modeling also accounts for the
residual strains which result from the cold-forming process of the tube. These effects will

be described briefly in Section 4.3.
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4.2 Concrete Constitutive Model

An accurate nonlinear material constitutive model for the concrete core of a CFT
is essential if the overall load-deformation behavior of the member is to be predicted for
any type of loading. The stress-strain characteristics of concrete introduce nonlinearity to
a CFT member even under loads that are conventionally considered elastic. This behavior
is due in part to cracking of the concrete in tension, which may occur at very low strains.
Once a crack has formed in concrete, it is no longer able to sustain any tensile loading,
resulting in a non-symmetric section when a CFT is subjected to flexural loads that cause
cracking. In addition to tensile cracking, the compressive stress-strain relationship of
concrete is nonlinear upon loading, and the material softens under continued compressive
strain once the peak compressive stress of the material is reached.

In this work, several distinct regions of the stress-strain relationship are isolated so
that the appropriate material constitutive model can be applied. These regions include
compressive loading, compressive unloading, post-failure, tensile loading, and tensile
unloading. These five regions of the concrete stress-strain curve are modeled using two
concrete constitutive formulations.

The tensile behavior of the concrete is based on a formulation presented in (ASCE,
1982) and is modeled as being linear elastic (with a stiffness equal to the tangent stiffness
at the point at which the stress changes from compressive to tensile) up to the rupture
stress. After rupture, the fiber loses all capacity to retain stress in tension, thus modeling
the opening of the crack. Upon reversed loading, compressive behavior is reinitiated at
the point at which tensile behavior first initiated, thus simulating crack closure (ASCE,
1982).

The concrete model developed by Chen and Buyukozturk (1985) is adapted to this
research for modeling the compressive behavior of each fiber in the concrete core. This
model is also based on a bounding surface formulation, and it contains several features

critical to capturing the complex behavior of concrete in CFT cores subjected to
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monotonic loading, including strain reversals. For details of this formulation, see Chen
and Buyukozturk (1985), Buyukozturk and Ameur-Moussa (1988), Ameur-Moussa and
Buyukozturk (1990), and Pagnoni et al. (1992). A brief description of the model is
provided here. Details of the modifications made to Chen’s model for analysis of
rectangular CFTs, and of the calibration to experimental results, can be found in Hajjar et
al. (1996e, f) and Molodan and Hajjar (1997) and are not repeated here.

Since the stress-strain curve of concrete in compression is observed to be nonlinear
even at low stress values, the concrete model does not assume the existence of an elastic
zone. In the context of a more traditional bounding surface formulation, this model may
be thought of as having a point loading surface (Dafalias and Popov, 1977).
Consequently, prior to contacting the bounding surface, the plastic modulus varies
continuously as a function of the normalized distance between the current stress point and
an image point on the bounding surface measured in the deviatoric plane. The size of the
bounding surface defines the peak concrete strength that may be achieved prior to

initiating softening behavior. Thus, after the stress point at a concrete fiber contacts the
bounding surface, the peak concrete strength is achieved (initially equal to fC' for uniaxial

loading), and the concrete softens, asymptotically approaching a zero stress level as it
crushes fully in this post-failure region.

In this model, a scalar damage parameter, K, is used to account approximately for
the microcrack formation in the concrete at every stage of compressive loading and
unloading, including the post-failure region. In the post-failure range, Ameur-Moussa and
Buyukozturk (1990) chose to calculate the increment in the damage parameter using an
empirical expression for the plastic shear modulus, H”. In this range, this expression must
be independent of the distance between the stress point and the bounding surface, which
becomes zero. The equation of the plastic shear modulus in the post-failure region was
chosen to provide a fit to the post-failure branch of the uniaxial concrete stress-strain
curve. This approach leads to a satisfactory prediction of the material response, provided
that the strain range covered is relatively small. The equation is given by (Ameur-Moussa

and Buyukozturk, 1990):
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HP =015 exp|-0.025 - (K,0s = 1)’ |- Fy (4.1)

max

where K, is the maximum value of the damage parameter K achieved in the loading

history, and F, is a multiaxial factor described in the next section. This equation causes

the plastic shear modulus to decrease to zero very rapidly with the increase of the
maximum damage value. It is this equation which is calibrated in this work to
approximate the effects of confinement on the concrete behavior within the context of
using only a uniaxial stress-strain behavior of the concrete (see Hajjar et al. (1996¢, f) and

Molodan and Hajjar (1997) for details of this calibration).

4.3 Calibration of the Steel and Concrete Constitutive Formulations

The calibration of the CFT fiber element involves explicit calibration of both the
steel and the concrete constitutive models. For the steel, the uniaxial load-deformation
curve obtained from stub column tests of rectangular steel tubes varies depending on the
manufacturing process used in forming the tube. The current computational formulation
and calibration are intended to be used with ASTM A500 Grade B square and rectangular
tubing, which is the most commonly available tube steel in the United States (AISC,
1994). This grade of steel tubing is manufactured by cold-forming ASTM-A36 steel plate
and welding a seam along the longitudinal axis of the member (AISC, 1994). This
manufacturing process produces a number of residual effects which have been observed
experimentally. First, the cold-forming procedure produces residual stresses in the hoop
direction of the tube. These stresses are highest near the corners, and drop to near zero at
the middle of the flat sidewalls. Second, the welding process produces residual stresses
near the weld seam; these localized residual stresses due to welding are neglected in the

current work. The general effect of the cold-forming process is that the uniaxial stress-
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strain curve of a steel coupon extracted either from the flanges or corners of a steel tube is
distinctly rounded, showing no yield plateau, and having a proportional limit substantially
below the 0.2% offset yield stress of the material (Lu and Kennedy, 1994; Sully and
Hancock, 1994).

Shen et al. (1995) calibrated their steel model to tests of structural steel box
columns. This steel showed a definitive yield plateau when stressing a virgin specimen.
Thus, it was necessary to accommodate the lower proportional limit and the rounded
stress-strain curve exhibited in cold-formed steel tubes. In this research, the loading
surface size is a function of the maximum amount of plastic strain that has been
accumulated at the steel fiber in the loading history: as the amount of plastic strain
increases, the size of the loading surface decreases to model a shrinking size of the elastic
zone (see Molodan and Hajjar (1997) for details of this relation). By specifying an initial
plastic strain, the initial size of the loading surface is reduced, thus resulting in a
proportional limit that is approximately 60% of the 0.2% offset yield stress of the steel

tube. This initial plastic strain, € was calibrated by Molodan and Hajjar (1997) and

p initial »
differs for the fibers in the corners and the flanges of the steel tube. By comparing directly
to tensile test results of steel coupons extracted from the flanges and corners of a steel
tube by Sully and Hancock (1994), a value of initial strain of 0.0006 was found to provide
an accurate calibration for the steel in the corners of the tube, and a value of 0.0004 was
found to be accurate for the steel in the flanges of the tube (for the modeling of annealed
tubes, these values are taken as zero). The value adopted for the corners is greater to
account for the higher degree of cold-working experienced by the corners, relative to the
flat portions of the tube. This causes the ratio of the initial elastic zone to the yield stress
to be smaller for the corners, producing a more rounded stress-strain curve, which
corresponds to the experimental observations (Lu and Kennedy, 1994; Sully and Hancock,
1994). While these initial strains seem small, they substantially affect the size of the elastic
zone and the ability to model cold-formed steel accurately (Molodan and Hajjar, 1997).

In addition to the ratio of the proportional limit to the yield stress being different in

the corners and flanges, Bridge (1976) and Sully and Hancock (1996) showed that the
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initial yield stress of the steel tube material differs in the corners and flanges, with the yield
stress in the corners as much as 25% higher. Thus, at the next stage of the calibration
process, the average stress-average strain curve was obtained from the results of the stub-
column test for which the actual yield stresses of the flange and corner portions of the tube
were reported in Sully and Hancock (1996). Using a calibration procedure outlined in
Molodan and Hajjar (1997), the yield stress in this model is varied from a minimum value
in the flanges (0.96 times the reported nominal yield stress) to a peak in the corners (1.2
times the reported nominal yield stress), with an eighth order polynomial used to vary the
yield stress continuously along the depth of each flange of the tube. The eighth order
polynomial was chosen to approximate the variation of the yield stresses along the tube
side reported by Bridge (1976).

After the steel parameters were calibrated, an analysis of the steel stub column
using the measured yield stresses was performed, and the calculated load-deformation
curve matched well to the experimental results of Sully and Hancock (1996).
Additionally, an axially loaded steel stub-column reported by Lu and Kennedy (1994) was
analyzed, and the results also compared well to the experimental data (see (Hajjar et al.
1996e, f; Molodan and Hajjar 1997)).

Once the monotonic steel behavior was calibrated, the monotonic stress-strain
curve of the concrete was calibrated to match the results from several CFT flexural
experiments conducted by Tomii and Sakino (1979a, b) which yielded moment-curvature-
thrust data. In particular, the post-failure plastic modulus of the uniaxial concrete stress-
strain response was increased substantially from the modulus established for unconfined
concrete by Ameur-Moussa and Buyukozturk (1990) in their original calibration (i.e., Eq.
4.1). This more gradual loss of strength represents the added ductility commonly
exhibited in square and rectangular CFT's as a result of the moderate confinement
exhibited in these members.

In Eq. 4.1, F, is a factor which accounts for the multiaxial stress state of the
concrete. In the implementation of Buyukozturk and Ameur-Moussa (1988), the value of

F, varies between 1.0 for unconfined concrete and 0.025 for highly confined concrete.

110



The value of the F, parameter of Eq. 4.1 was altered in the current research so as to

provide a strong correlation with experimental results, and in particular a sufficient level of
curvature ductility.

It was determined that the factor which most affected the post-peak ductility of the
concrete is the D/t ratio of the steel tube (Hajjar and Gourley, 1996). The CFT monotonic
moment-curvature-thrust results of Tomii and Sakino (1979a, b) were chosen in order to
investigate the effect of the D/t ratio on the post-peak behavior of the concrete, and on the
curvature ductility of individual CFT members. The experimental results used for this
calibration included two groups of CFTs, each loaded first with a constant axial force, and
then in flexure with a uniform bending moment. For the first group, D/t was equal to 24;
for the second group, D/t was equal to 44. Each group consisted of five square CFT
beam columns, with similar geometric and material properties. The ratio of applied axial
force to the axial capacity of the column varied between the tests. The steel tubes where
annealed and had yield stresses ranging from 280 to 340 MPa. The concrete strength was
approximately 25 MPa (see (Tomii and Sakino, 1979a, b; Molodan and Hajjar, 1997) for
details of these experiments).

While it is possible to vary F, as a function of D/, a constant value of 0.05 was
found to be sufficient to obtain strong correlation with the experimental results. This
value was used in Eq.-4.1 for all subsequent analyses in this work. The verification results

of Chapter 5 confirm the accuracy of these calibrations.
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Chapter 5

Verification of CFT Plasticity Formulation

This chapter contains verification problems which demonstrate the accuracy of the
current computational formulation for analysis of rectangular CFT columns, beams, beam-
columns, and composite frames consisting of steel wide-flange beams which frame rigidly
into CFT beam-columns. As mentioned previously, a fully nonlinear structural frame
analysis program (CFTFiber) was developed to implement this finite element formulation.
The computer program is used to conduct the computational analyses in this chapter. The
calibrations of the slip model outlined in Chapter 3 and the steel and concrete constitutive
models outlined in Chapter 4 are used for all analyses in this chapter. Verification of the
steel wide-flange beam finite element is presented in Appendix B. Verification of the 18
DOF CFT geometrically nonlinear finite element formulation is also presented in Appendix
B for a variety of materially elastic stability problems. Further details of the computer
program, including a sdfnple input file can be found in Appendix C of this thesis.

The chapter is separated into sections, each representing a specific loading
condition or structural configuration. An analysis of the error in the computational results
when compared to the experiments is presented. The final section presents an example of

a 4-story 4-bay planar frame to demonstrate the application of the current formulation.
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5.1 Comparison to Experimental CFT Column Test

Many CFT researchers have conducted experimental squash load tests of CFTs to
determine the overall load-deformation characteristics of CFT columns subjected to pure
axial load. Figure 5.1 below shows the result of one such calibration study for the
experimental stub-column test conducted by Lu and Kennedy (1994). The experimental

parameters for this test are given in Table 5.1.

Table 5.1: CFT Column Example

Test Nominal Tube Dt f. b Other Information
(Specimen) Dimensions (mm) (MPa) | (MPa)
Lu and Kennedy, 152.4x152.4x8.95 16 | 47.0 432 Capped ends
1994 (Section 2)
3500 + |
3000 + . —
2500 + /=
Load 2000 +
(N) 1500 - [*
» Experimental (Lu and Kennedy, 1994)
1000 —+
— Computational
500 -
0 l | i 1 {
0 0.005 0.01 0.015 0.02 0.025
Strain

Figure 5.1: Comparison of Computational and Experimental Results for a CFT Column
Test (Lu and Kennedy, 1994)

The discrepancy between the computational and experimental results can be

attributed mainly to a slight increase in the concrete load carrying capacity due to
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confinement by the steel tube. The increase in compressive strength is not modeled in the
current formulation. However, the increase in ductility is part of the calibration of

- Molodan and Hajjar (1996), as discussed in Chapter 4. The load-deformation plot of the
experimental specimen becomes considerably nonlinear at approximately one half of the
ultimate load. This behavior is due to both the concrete nonlinear stress-strain behavior
and the early proportional limit exhibited by cold-formed steel tubing. For this example,
the computational model under-predicts the ultimate capacity of the specimen by
approximately 7.5% at peak load, as well as under-predicting the roundness of the load-

deformation curve.

5.2 Comparison to Experimental CFT Beam Tests

CFT flexural experiments have been conducted by Lu and Kennedy (1994) on
rectangular CFTs, and were also included as part of a study of nonproportionally loaded,
square CFT beam-columns by Tomii and Sakino (1979a). However, the experimental
setups were significantly different for these two research programs. The computational
model for each is given schematically in Fig. 5.2. The tests by Lu and Kennedy included
measurement of slip in the flexural specimens, and specimen CB33 was used as a
verification problem for the slip calibration of Ch. 3. Lu and Kennedy also included
minor axis bending of rectangular CFTs and a variety of D/t and L/D ratios. The
experimental parameters are given in Table 5.2.

The computational and experimental results are plotted for the verification
examples in Figs. 5.3 through 5.10. Note that for all comparisons in this chapter, the
mean and standard deviation of the error is presented in Section 5.5. The initial stiffness
and the bounding stiffness predicted by the computational model compare well with the
experimental data points. The computational model also tends to slightly the ductility of
beams subjected to pure flexure for the problems presented in this section. The

computational data has been truncated at approximately the same ductility as the
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experimental results. In practice, experimental tests are generally truncated by excessive

deflections which\may reach the limits of the testing apparatus.

(a) ,
Figure 5.2: Computational Models for Flexural Verification Studies:
(a) (Lu and Kennedy, 1994) (b) (Tomii and Sakino, 1979a)

Table 5.2: CFT Beam Verification Tests

(b)

Test Nominal D/t fc' 5
(Specimen) Dimensions major | (MPa) | (MPa) Other Data
(mm) (minor)
Lu and Kennedy, | 152.4x152.4x 31.7 47.0 389 a=235mm
1994 (CB12) 4.43 m = 1305 mm °
Lu and Kennedy, | 152.4x152.4x 16 46.9 432 a =236 mm
1994 (CB22) 8.95 m = 1305 mm
Lu and Kennedy, | 253.4x152.0x 39.7 45.2 377 a =766 mm
1994 (CB33) 6.17 (23.8) m = 1508 mm
Lu and Kennedy, | 253.0x152.2x 26.7 43.8 394 a= 1276 mm
1994 (CB45) 9.04 (16) m = 1508 mm
Lu and Kennedy, | 152.0x253.4x 39.7 42.1 377 a=463 mm
1994 (CB53) 6.17 (23.8) m = 1305 mm
minor axis bending
Tomii and Sakino, | 100x100x2.27 44 21.6 305 annealed tube
1979a (1I-0) L =300 mm
Tomii and Sakino, | 100x100x2.98 33 20.6 289 annealed tube
1979a (111-0) L =300 mm
Tomii and Sakino, | 100x100x4.25 24 18.6 284 annealed tube
1979a (IV-0) L =300 mm
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80 —
70 +
60 -
50 +

Moment 40 1

(kN-m)

30 - » Experimental (Lu and Kennedy, 1994)

2049 _ Computational

0 I — I I

0 0.0001 0.0002 0.0003 0.0004
Curvature (radians/mm)

Figure 5.3: Comparison of Computational and Experimental Results for a CFT Flexural
Test (Lu and Kennedy, 1994, Specimen CB12)

160 +
140 + . -
120 |

100 + -
Moment =

(KN-m) 80 +
60 + /. Experimental (Lu and Kennedy, 1994)
40 —+

20 +
0 I I i %

0 0.00005 0.0001 0.00015 0.0002
Curvature (radians/mm)

— Computational

Figure 5.4: Comparison of Computational and Experimental Results for a CFT Flexural
Test (Lu and Kennedy, 1994, Specimen CB22)
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250 -

200 + - —
150 +
Moment g
N1 100 1
T [* « Experimental (Lu and Kennedy, 1994)
50 +/ — Computational
0 I I I I
0 0.00005 0.0001 0.00015 0.0002

Curvature (radians/mm)

Figure 5.5: Comparison of Computational and Experimental Results for a CFT Flexural
Test (Lu and Kennedy, 1994, Specimen CB33)

300 -
250 -

200 -

Moment
(kN-m)

100 -

50 -

150 +

= Experimental (Lu and Kennedy, 1994)

T

— Computational

0

T 1 1 1 1

0 0.00005 0.0001 0.00015 0.0002 0.00025

Curvature (radians/mm)

Figure 5.6: Comparison of Computational and Experimental Results for a CFT Flexural
Test (Lu and Kennedy, 1994, Specimen CB45)
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160 -
140 + . - "
120 -

100 -
Moment 80 .

(kN-m)

1

60 - [ . Experimental (Lu and Kennedy, 1994)
40 +

20 -
0 I i I I I

0 0.00005 0.0001 0.00015 0.0002 0.00025
Curvature (radians/mm)

— Computational

Figure 5.7: Comparison of Computational and Experimental Results for a CFT Flexural
Test (Lu and Kennedy, 1994, Specimen CB53)

14
12 -
10 -

Moment 8 +
(kN-m) ¢ |

» Experimental (Tomii and Sakino, 1979a)

— Computational

0 | I I | ]
I I T 1 1

0 0.02 0.04 0.06 0.08 0.1
Rotation (radians)

Figure 5.8: Comparison of Computational and Experimental Results for a CFT Flexural
Test (Tomii and Sakino, 1979a, Specimen 11-0)
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6 L/ = Experimental (Tomii and Sakino, 1979a)

4 1 — Computational

24

0 I I I I I
0 0.02 0.04 0.06 0.08 0.1

Rotation (radians)

Figure 5.9: Comparison of Computational and Experimental Results for a CFT Flexural
Test (Tomii and Sakino, 1979a, Specimen III-0)

25 +

= Experimental (Tomii and Sakino, 1979a)

5 - — Computational

0 | I I | ]
I T l 1 1

0 0.02 0.04 0.06 0.08 0.1
Rotation (radians)

Figure 5.10: Comparison of Computational and Experimental Results for a CFT
Flexural Test (Tomii and Sakino, 1979a, Specimen IV-0)
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5.3 Comparison to Experimental CFT Beam-Column Tests

Comparison to beam-column experiments serves to verify both the geometrically
and materially nonlinear formulation. Both proportionally and nonproportionally loaded

beam-columns are verified in the following sections.
5.3.1 Proportionally Loaded CFT Beam-Columns

Several CFT researchers have conducted beam-column tests on rectangular CFTs
under proportional, eccentric loading. In this loading scheme, the axial load is applied at
a given eccentricity so that the end moment and axial force increase in the same
proportion during the test. An example of the corresponding computational model is
shown schematically in Fig. 5.11. The experimental tests which are used for verification

are shown in Table 5.3.

oy B '&P_t
S o

Figure 5.11: Eccentrically Loaded Beam-Column Computational Model
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"Table 5.3: Proportionally Loaded CFT Beam-Column Verification Tests

Test Nominal L/D D/t f 5
(Specimen ) Dimensions | major major | (MPa) | (MPa) Other Data
(mm) (minor) | (minor)
Bridge (1976) | 203.7x203.9 10.5 20 29.9** [ 291 e =38 mm
(SHC-1) x9.96
Bridge (1976) | 203.3x202.8 10.5 20 37.2%* | 313 e =38 mm
(SHC-3) x10.03 o =30°
Bridge (1976) | 202.8x203.4 10.5 20 39.2%% | 317 e =38 mm
(SHC-4) x9.88 o =45°
Bridge (1976) | 202.6x203.2 15 20 44.3** | 319 e =38 mm
(SHC-5) x10.01 o =30°
Bridge (1976) | 203.2x202.1 15 20 36.1%* | 317 e = 64 mm
(SHC-6) x9.78 o = 45°
Bridge (1976) | 152.5x152.3 20 23 3L.1%* | 254 e =38 mm
(SHC-7) x6.48
Bridge (1976) | 152.5x152.3 20 23 31.1%* | 254 e =64 mm
(SHC-8) x6.48
Cederwall et 120x120x5 25 24 47 304 €major = 20 mm
al., 1990 (1)
Cederwall et 120x120x5 25 24 46 438 €major = 20 mm
al., 1990 (2)
Cederwall et 120x120x8 25 15 46 300 Emajor = 20 mm
al., 1990 (6) ‘
Cederwall et 120x120x8 25 15 47 376 Emajor = 20 mm
al., 1990 (7)
Cederwall et 120x120x8 25 15 103 379 | €major = 20 mm
al., 1990 (9)
Cederwall et 120x120x8 25 15 39 379 €major = 20 mm
al., 1990 (10)
Cederwall et 120x120x8 25 15 80 390 €major = 10 mm
al., 1990 (13)
Shakir-Khalil | 120x80x4.5 23 24 40%* 386.3 | emajor = 24 mm
and Zeghiche, (34.5) (16)
1989 (2)
Shakir-Khalil | 120x80x4.47 23 24 43% 343.3 | epinor = 40 mm
and Zeghiche, (34.5) (16)
1989 (5)
Shakir-Khalil | 120x80x4.47 23 24 45% 3433 | epmgjor = 24 mm
and Zeghiche, (34.5) (16) €minor = 16 mm
1989 (6)
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Table 5.3 (cont'd)

Test Nominal L/D D/t £ £,
(Specimen ) Dimensions major major | (MPa) | (MPa) Other Data
(mm) (minor) | (minor)

Shakir-Khalil | 120x80x4.44 23 24 44%* 357.5 | emajor =60 mm

and Zeghiche, (34.5 (16) €minor = 40 mm
1989 (7)

Shakir-Khalil, 150x100x5 25.5 30 403 | 3505 | emyor =45 mm
1991 (4) (38.3) (20)

Shakir-Khalil, 150x100x5 31.6 30 38.2 | 350.5 | emjor =75 mm
1991 (9) (47.4) (20)

Shakir-Khalil, | 150x100x5 26.7 30 40.6 368 €minor = 30 mMm
1991 (10) (40.0) (20)

* compressive strength reported from cube tests rather than cylinder tests

** concrete strength at age of testing

Figures 5.12 through 5.32 show the graphs of load verses midpoint deflection for

both the experimental and computational results for these tests. The computational model

provides an excellent prediction of the initial stiffness, gradual softening, and ultimate

capacity of the members. The model is able to predict the behavior of the 6 biaxially

loaded beam-columns as well (Bridge (1976) Specimens BR3-BR6 and Shakir-Khalil and

Zeghiche (1989) specimens 6 and 7), with only slightly less accuracy than uniaxially

loaded specimens. The ultimate strength of the CFT members containing high-strength

concrete (. greater than 70 MPa) are not predicted as well by the computational model,

although the initial stiffness and roundness of the curve match the experimental results. As

the concrete constitutive model of Molodan and Hajjar (1997) was not calibrated to high

strength concrete, these results are not surprising. Nevertheless, the current formulation

provides a reasonable approximation to beam-column behavior even with high strength

concrete. Again, the mean and standard deviation of the error in these results are

summarized in Section 5.5.
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2500 1

2000 w =

1500 + y
Load ] y
kN
) 1000 T 7 » Experimental (Bridge, 1976)

y — Computational
500 T
0 : % i
0 5 10 15

Deflection (mm)

Figure 5.12: Comparison of Computational and Experimental Results for an
Eccentrically Loaded CFT Beam-Column (Bridge, 1976, Specimen 1)

2500 T

2000 T e

1500 t .
Load "
(kN) 1

1000 . .

» Experimental (Bridge, 1976)
500 + — Computational
0 I I 1 I i
0 2 4 6 8 10

Deflection (mm)

Figure 5.13: Comparison of Computational and Experimental Results for an
Eccentrically Loaded CFT Beam-Column (Bridge, 1976, Specimen 3)
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2000 T -

1500 + .
Load .
(kN) 1

1000 . .

» Experimental (Bridge, 1976)
500 + — Computational
0 I | |
0 5 10 15

Deflection (mm)

Figure 5.14: Comparison of Computational and Experimental Results for an
Eccentrically Loaded CFT Beam-Column (Bridge, 1976, Specimen 4)
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Load
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= Experimental (Bridge, 1976)
500 + — Computational
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Figure 5.15: Comparison of Computational and Experimental Results for an
Eccentrically Loaded CFT Beam-Column (Bridge, 1976, Specimen 5)
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Figure 5.16: Comparison of Computational and Experimental Results for an

Eccentrically

800 T
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500 A
Load
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100

Loaded CFT Beam-Column (Bridge, 1976, Specimen 6)

I

= Experimental (Bridge, 1976)

— Computational

} | | | |
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Figure 5.17: Comparison of Computational and Experimental Results for an

Eccentrically

Loaded CFT Beam-Column (Bridge, 1976, Specimen 7)
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* Experimental (Bridge, 1976)
200 +
— Computational
100 +
0 I { I I i I
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Deflection (mm)

Figure 5.18: Comparison of Computational and Experimental Results for an
Eccentrically Loaded CFT Beam-Column (Bridge, 1976, Specimen 8)
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= Experimental (Cederwall et al., 1990)
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Figure 5.19: Comparison of Computational and Experimental Results for an
Eccentrically Loaded CFT Beam-Column (Cederwall et al., 1990, Specimen 1)
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Figure 5.20: Comparison of Computational and Experimental Results for an
Eccentrically Loaded CFT Beam-Column (Cederwall et al., 1990, Specimen 2)
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Figure 5.21: Comparison of Computational and Experimental Results for an
Eccentrically Loaded CFT Beam-Column (Cederwall et al., 1990, Specimen 6)
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Figure 5.22: Comparison of Computational and Experimental Results for an
Eccentrically Loaded CFT Beam-Column (Cederwall et al., 1990, Specimen 7)
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Figure 5.23: Comparison of Computational and Experimental Results for an
Eccentrically Loaded CFT Beam-Column (Cederwall et al., 1990, Specimen 9)

128



900 T

800 — . . -

700 +

600 +
Load 500 T
(kN) 400 +
300 A

200

100 T

0 ! : | | : |

0 5 10 15 20 25 30
Deflection (mm)

= Experimental (Cederwall et al., 1990)

T

— Computational

Figure 5.24: Comparison of Computational and Experimental Results for an
Eccentrically Loaded CFT Beam-Column (Cederwall et al., 1990, Specimen 10)
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Figure 5.25: Comparison of Computational and Experimental Results for an
Eccentrically Loaded CFT Beam-Column (Cederwall et al., 1990, Specimen 13)
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Figure 5.26: Comparison of Computational and Experimental Results for an
Eccentrically Loaded CFT Beam-Column
(Shakir-Khalil and Zeghiche, 1989, Specimen 2)
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Figure 5.27: Comparison of Computational and Experimental Results for an
Eccentrically Loaded CFT Beam-Column
(Shakir-Khalil and Zeghiche, 1989, Specimen 5)
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Figure 5.28: Comparison of Computational and Experimental Results for an
Eccentrically Loaded CFT Beam-Column
(Shakir-Khalil and Zeghiche, 1989, Specimen 6)
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Figure 5.29: Comparison of Computational and Experimental Results for an
Eccentrically Loaded CFT Beam-Column
(Shakir-Khalil and Zeghiche, 1989, Specimen 7)
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Figure 5.30: Comparison of Computational and Experimental Results for an
Eccentrically Loaded CFT Beam-Column
(Shakir-Khalil, 1991, Specimen 4)
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Figure 5.31: Comparison of Computational and Experimental Results for an
Eccentrically Loaded CFT Beam-Column
(Shakir-Khalil, 1991, Specimen 9)
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Figure 5.32: Comparison of Computational and Experimental Results for an
Eccentrically Loaded CFT Beam-Column
(Shakir-Khalil, 1991, Specimen 10)

5.3.2 Nonproportionally Loaded CFT Beam-Columns

Nonproportionally loaded beam-columns are members which are loaded with both
axial force and flexure, but the loads are increased in different proportions. These tests
are generally thought to be more difficult to predict with computational models, because
of the path-dependency of the materials. In nonproportional loading, the materials may to
undergo strain reversals. The current computational formulation accounts for the path-
dependency of the materials as well as strain reversals.

The most thorough experimental program on rectangular CFTs under
nonproportional monotonic loading was conducted by Tomii and Sakino (1979a, b). The
experimental research program included several important parameters, including the D/t
ratio of the steel tubes and the magnitude of the applied axial load. In these experiments,
the axial load is applied in its entirety before any flexural loading is applied.

It is important to note that Tomii and Sakino conducted their studies on annealed

steel tubes. For this reason, the initial plastic strain for the steel computational model is
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assumed to be zero, producing a nearly bilinear stress-strain curve. In addition, expansive
mortar was used in the concrete mix to reduce the possibility for slip between the steel and
concrete. This may have had the consequence of adding some initial confinement to the
concrete core which is manifest in a higher concrete compressive strength. Tomii and
Sakino used a factor of 1.2 for the concrete strength in their computational model for
predicting the moment-curvature relationship of the CFT members. A factor of 1.0 is
used in the current analysis.

Figure 5.33 shows the nonproportionally loaded beam-column model. Tomii and
Sakino measured rotation of the member ends. However, they presented their results in
terms of curvature, using the average of the member end rotations divided by the length of
the constant moment region to compute the curvature. In order to be consistent with the
experimental measuring scheme, the curvature presented for the experiments was
converted to rotation for the graphs presented in this section. Table 5.4 gives the
experimental parameters for the verification tests.

Figures 5.34 to 5.39 present the moment-rotation relationships for this set of
verification examples. Two other series of tests were presented by Tomii and Sakino with
D/t ratios of 24 and 44. These tests were used to calibrate the concrete constitutive model
and are therefore omitted from the verification set. The moment-rotation graphs for the
other series of tests show similar accuracy to the verification set (Molodan and Hajjar,

1997).

Figure 5.33: Nonproportionally Loaded Beam-Column Computational Model
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Table 5.4: Nonproportionally Loaded CFT Beam-Column Verification Tests

Test Nominal L/D D/t f £
(Specimen) Dimensions | major | major | (MPa) | (MPa) Other Data
(mm) (minor) | (minor)
Tomii and Sakino, 100x100x 3 33 | 20.6 289 P/P,=0.10
1979a (I11-1) 2.98
Tomii and Sakino, 100x100x 3 33 20.6 289 P/P,=0.20
1979a (111-2) 2.98
Tomii and Sakino, 100x100x 3 33 20.6 289 P/P,=0.30
1979a (I11-3) 2.99
Tomii and Sakino, 100x100x 3 33 20.6 289 P/P,=0.40
1979a (I11-4) 2.99
Tomii and Sakino, 100x100x 3 33 20.6 289 P/P,=0.50
1979a (II1-5) 2.99
Tomii and Sakino, 100x100x 3 33 20.6 289 P/P, = 0.60
1979a (111-6) 2.99
where Po= A f + A f',
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Figure 5.34: Comparison of Computational and Experimental Results for a
Nonproportionally Loaded CFT Beam-Column

(Tomii and Sakino, 1979a, Specimen III-1)
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Figure 5.35: Comparison of Computational and Experimental Results for a
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(Tomii and Sakino, 1979a, Specimen I11-2)
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Figure 5.36: Comparison of Computational and Experimental Results for a

Nonproportionally Loaded CFT Beam-Column

(Tomii and Sakino, 1979a, Specimen III-3)
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Figure 5.37: Comparison of Computational and Experimental Results for a
Nonproportionally Loaded CFT Beam-Column
(Tomii and Sakino, 1979a, Specimen I11-4)
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Figure 5.38: Comparison of Computational and Experimental Results for a
Nonproportionally Loaded CFT Beam-Column
(Tomii and Sakino, 1979a, Specimen I1I-5)
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Figure 5.39: Comparison of Computational and Experimental Results for a
Nonproportionally Loaded CFT Beam-Column
(Tomii and Sakino, 1979a, Specimen I1I-6)

5.4 Comparison to Experimental Subassemblies of Steel Beams and

CFT Columns

The current computational formulation has been developed for three-dimensional
analysis of composite frame structures. Several experimental research programs are
underway in Japan to investigate such frames (Kawaguchi et al, 1996), however this
research is ongoing and little information is currently available. One set of tests is
available from Kawaguchi et al. (1991b) and Morino et al. (1993), who conducted a set of
tests on three-dimensional composite frames consisting of steel I-girders framing rigidly
into CFT beam-columns, subjected to nonproportional cyclic loading. The tests were
conducted under constant axial load, constant minor-direction beam loading, and
alternating major-direction beam loading under displacement control. The experimental

setup and computational model are shown in Fig. 5.40. The experimental specimens
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were designed so that failure did not occur in the beam-to-column connection or in the

steel wide-flange beams.

i T )
¥~ CFT Beam-Column
" CFT Beam-Column '

1
Steel Beam 2964 QT _____ A B,

—Steel Beam - f —===——T LQ
mm M \ D,

z d I > |

Ly *{aa 1738 mm 1 ,X 1

) »

Figure 5.40: Three-Dimensional Subassembly: a) Experimental Setup (after (Morino et
al., 1993)); b) Computational Model (after (Hajjar et al., 1996b))

One of the specimens is used as the final verification problem for the current
computational model. This specimen used built-up steel wide-flange sections with |
dimensions of 250x125x6x9 mm for the beams, with a square CFT column with
dimensions of 125x125x6 mm. The concrete compressive strength was 20.0 MPa; the
steel yield stress of the CFT was 394.9 MPa. In the experiment, several elastic cycles
were applied to the specimen before the amplitude of the loading was increased. The
comparison to the computational model is made for the first experimental quarter-cycle
which shows significant nonlinear behavior. Figure 5.41 shows the shear at the beam
ends in the X-Z plane plotted versus the drift rotation of the specimen, as measured by the
deformation of the beams at the points D1 and D2 shown in Fig. 5.40b. The
computational model predicts the strength and stiffness of the specimen for the entire
loading with excellent accuracy.

This verification example suggests that the current computational formulation
produces acceptable results for three-dimensional analysis of composite frames composed
of steel wide-flange beams framing rigidly into CFT columns. It also demonstrates the
predictive capability of the current formulation for analysis or testing of composite frame

|
|
|
)
structures. |
|
|
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Figure 5.41: Comparison of Experimental and Computational Results for Three-

Dimensional Composite Subassembly (Morino et al., 1993, Specimen SCC-20)

5.5 Analysis of Results

The verification problems presented in the previous sections were chosen to

represent a variety of loading conditions, as well as a wide range of material strengths,

L/D ratios, and D/t ratios. The problems were chosen from a variety of researchers to

minimize the possibility of errors which may result from verifying with a limited set of

experimental results.

Following is an analysis comparing the experimental results to the computational

results. The entire set of results is used to show the accuracy of the computational model,

and several subsets are also presented to determine if the computational model is more

accurate for different types of loading, geometry, or material types.
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5.5.1 Statistical Methods and Results for All Verification Examples

In this section, fhe experimental and computational results are compared at two
different points within each analysis. Figure 5.42 shows the points in the analysis at
which results are compared statistically. First, a comparison is made at the deformation
level corresponding to the lesser of the experimental and computational maximum loads
(point d1 in Fig 5.42). As an indication of the accuracy of the computational model to
predict the spread of plasticity, a second comparison is made at half of this deformation

level (point d2 in Fig 5.42). Finally, the initial slope of the two plots are compared.

800 -+ Load (computational }—
700 + Load (experlmental).
600 T e
500 - /
Load 400 + > !
300 T
200 + » Experimental
100 —+ — Computational
0 % : ; {
0 5 10 15 20
Deformation

Figure 5.42: Example of Statistical Sampling Points

Table 5.5 shows the statistical comparison for all the verification problems
presented in this chapter. The computational model over-predicts the strength of CFT
beams, columns and composite frames an average of 1.79%, with a standard deviation of

6.89%, when compared to experimental results.
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A second comparison can be made at a lower deformation level corresponding to
the line d2 in Fig. 5.42. The loads at this deformation level have an average percent error
of only 0.15% and a standard deviation of 6.72%, suggesting that the spread of plasticity
through the CFT elements is predicted with excellent accuracy. Finally, comparison of the
initial stiffness gives an average error of 2.30%, although the standard deviation is quite
high for this comparison at 12.30%. The stiffness of CFTs beams and beam-columns at
low load levels depends on a number of factors that are difficult to predict with high
accuracy, including initial out-of-straightness, concrete stress-strain behavior, and
concrete tensile strength. The data analysis suggests that the computational model
predicts the initial stiffness of these members with acceptable accuracy, although

significant scatter in the results may occur due to the aforementioned effects.

Table 5.5: Comparison of Computational Results with Experiments for
All Verification Problems

Percent Error of Analysis From Experiment
Test Load at d1 Load at d2 Initial stiffness
(Notation)

Lu and Kennedy, 1994 (CB12) -8.11 -8.01 -25.1
Lu and Kennedy, 1994 (CB22) 7.86 5.75 -16.1
Lu and Kennedy, 1994 (CB33) 3.32 3.23 -22.6
Lu and Kennedy, 1994 (CB45) 1.36 3.29 -36.4
Lu and Kennedy, 1994 (CB53) 7.74 7.35 -7.32
Tomii and Sakino, 1979a (1I-0) -21.1 -17.9 -1.63
Tomii and Sakino, 1979a (II1-0) -11.4 -9.68 3.86
Bridge, 1976 (SHC-1) -2.46 2.98 9.18
Bridge, 1976 (SHC-3) 1.09 10.6 15.9
Bridge, 1976 (SHC-4) -8.67 -4.76 12.9
Bridge, 1976 (SHC-5) - -4.46 0.87 3.57
Bridge, 1976 (SHC-6) -2.31 2.21 11.4
Bridge, 1976 (SHC-7) -6.53 5.50 6.43
Bridge, 1976 (SHC-8) -12.9 -2.60 5.37
Cederwall et al., 1990 (1) 5.50 3.06 4.73
Cederwall et al., 1990 (2) 541 2.91 6.04
Cederwall et al., 1990 (6) 7.53 7.85 12.6
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Table 5.5 (cont'd)

Percent Error of Analysis From Experiment

Test Load at d1 Load at d2 Initial stiffness
(Notation)
Cederwall et al., 1990 (7) 5.99 3.38 11.6
Cederwall et al., 1990 (9) 6.23 7.96 11.3
Cederwall et al., 1990 (10) 2.81 -3.74 -3.75
Cederwall et al., 1990 (13) 8.69 11.3 14.5
Shakir-Khalil and Zeghiche, 1989 -0.64 8.11 19.0
(2)
Shakir-Khalil and Zeghiche, 1989 1.74 2.68 4.93
(5)
Shakir-Khalil and Zeghiche, 1989 -8.51 -3.86 8.38
(6)
Shakir-Khalil and Zeghiche, 1989 -7.80 -13.0 -17.0
(1N
Shakir-Khalil, 1991 (4) -2.76 3.85 0.42
Shakir-Khalil, 1991 (9) 1.05 6.50 9.85
Shakir-Khalil, 1991 (10) -0.11 1.68 8.18
Tomii and Sakino ,1979a (I1I-1) -8.63 -9.27 1.27
Tomii and Sakino ,1979a (I11-2) -9.29 -6.69 7.98
Tomii and Sakino ,1979a (I1I-3) -9.31 -3.95 13.2
Tomii and Sakino ,1979a (I11-4) -3.93 -5.11 4.50
Tomii and Sakino ,1979a (I1I-5) -4.11 -4.56 8.97
Tomii and Sakino ,1979a (I11-6) -1.04 -0.89 -2.31
Morino et al., 1993 (SCC-20) 5.03 -1.65 -3.24
Average Percent Error -1.79 0.15 2.30
Standard Deviation 6.72 12.3

6.98

5.5.2 Results for Various Groups of Verification Examples

Computational formulations may be more accurate for some types of loading

conditions or geometries than for others, due to the specifics of their stiffness formulation,

force recovery, or meshing procedures. The experimental research program may also

have an effect on the comparison between the experimental and computational results.
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For example, the end bearing supports used by Cederwall et al. (1987) for eccentrically
loaded CFT beam-columns differ from the supports used by other researchers such as
Bridge (1976) and Shakir-Khalil (1991), and may thus offer differing levels of restraint.
As another example, Tomii and Sakino (1979a) were the only researchers to use both
annealed steel tubes and expansive cement mortar when casting their CFT specimens. All
of these items may have an effect on the load-deformation behavior obtained from the
experiments.

In order to investigate some of these phenomenon, the CFT verification tests are
grouped as shown in Table 5.6. In this table, the only comparison which is made is for the

load at the deformation level corresponding to point d1 in Fig. 5.42.

Table 5.6: Comparison of Various Groups of CFT Tests

Description of Group Average Standard

% Error Deviation
Pure Flexure -2.90 10.1
Eccentrically Loaded Beam-Columns -0.53 5.90
Non-Proportionally I.oaded Beam-Columns -6.05 3.19
Composite Frame Subassembly 5.03 N.A.
Tests from Bridge, 1976 -5.18 4.30
Tests from Tomii and Sakino ,1979a -8.59 5.74
Tests from Cederwall et al., 1990 6.03 1.71
Tests from Shakir-Khalil and Zeghiche, 1989 -2.43 3.85

and Shakir-Khalil, 1991

Tests from Lu and Kennedy, 1994 2.43 5.84
Tests with D/t > 24 -4.22 6.88
Tests with D/t <24 -0.08 6.45
Tests with Non-Annealed Steel Tubing 0.04 6.0
Tests with f,' < 40.0 MPa -6.31 6.37
Tests with f,' > 40.0 MPa . 0.07 6.28
Tests with /. > 70.0 MPa 7.46 1.23

This table shows that the computational model provides excellent accuracy for a number
of loading conditions and CFT geometries. Of the loading categories, the computational

model predicts the behavior of eccentrically loaded beam-columns with the most accuracy,
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e

over-predicting the strength of these members with an average error of 0.53%. The model
also produces excellent accuracy for members with a D/t ratio less than 24, suggesting
that the steel computational model provides better prediction of the behavior of the
members than fhe concrete computational model, as may be expected. In addition, the
behavior of CFTs with medium to high concrete compressive strength are reproduced
reasonably well by the computational model. The model under-predicts the strength of
CFTs with high concrete compressive strength while over-predicting strength for CFTs

with low concrete strength.

5.6 Slip and Bond Effects

5.6.1 Effect of Bond and Slip on Flexural Behavior

The purpose of including slip in the formulation of the CFT element is primarily to
determine whether or not loss of bond occurs in CFT members used as part of structural
frames. This section, as well as the final example of a four-story frame, provide the results
of a preliminary study to determine the effect of slip on CFT behavior, and in particular
whether an assumption of perfect bond may be appropriate for analysis and design
computations.

Chapter 3 focused primarily on slip induced due to axial behavior in which only the
steel tube is loaded directly. Clearly, if sufficient axial force is applied to a CFT, slip may
be induced. The effect of slip on flexural behavior is more difficult to quantify than it is
for axial behavior, because material nonlinearity is required before any interface stress
develops in flexure. The final example problem of Chapter 3 demonstrated that a smail
amount of slip occurs during flexural loading, and that loss of bond may occur near the
limit point of the member. While complexities such as contact between the concrete core
and the steel tube are not modeled directly in this formulation, the calibrated slip model

provided strong correlation with those experimental results. This phenomenon merits
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further investigation, as it is important to understand whether the overall load-deformation
behavior of flexural members is altered significantly if slip occurs.

Several example problems from Lu and Kennedy (1994) are presented in this
section. The experimental parameters may be found in Section 5.2. For each test, the
parameters of the computational slip model were varied to study the effect of bond
strength on the load-deformation behavior of the members.

Figures 5.43 through 5.45 show how bond strength and initial slip layer stiffness
affect the moment-curvature diagrams of these CFTs. In these figures, the computational
results are truncated approximately at the experimentally observed maximum curvature.
Reducing the initial slip layer stiffness by two orders of magnitude slightly reduces the
nonlinear flexural stiffness of the members for a given level of curvature relative to using
the calibrated parameters. However, it does not significantly affect the ultimate strength
of the member at high curvature levels, as is seen in Table 5.7, which reports the moment
at the maximum curvature value plotted in the figures. Similarly, using a lower bond
strength does not affect the computational results until the behavior becomes nonlinear,
and for these specimens the reduction in strength remains small. Reducing the bond
strength to two-thirds of the calibrated value (i.e., to a value of 0.4 MPa) did not affect
the load-deformation curves, and these results are not presented. Lowering the bond
strength to one-third of the calibrated value (0.2 MPa) affected the load at which nonlinear
behavior may first be seen, as well as reducing the strength slightly (Table 5.7). However,
it may be seen that the general magnitude of strength, as well as the stiffness of the
members, changes very little for the full duration of loading, and the computational curves

all match the experimental results equally well.
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Figure 5.45: Effect of Varying Bond Strength on the Behavior of
(Lu and Kennedy, 1994, Specimen CB33)

Table 5.7: Effect of Bond Strength on Flexural Load-Deformation Behavior

Test (Notation) Experimental Percent Reduction in Moment
Maximum Strength From Case Where
Curvature f» = 0.6 MPa, ky;, = 10° MPa
(rad/mm) £, =02MPa | kg,=10"MPa
Lu and Kennedy, 1994 (CB12) 0.0003 2.54 -0.032
Lu and Kennedy, 1994 (CB22) 0.0002 1.95 0.57
Lu and Kennedy, 1994 (CB33) 0.00015 1.33 -1.91
Average 1.94 -0.46

5.6.2 Composite Frame Design Example

The CFT fiber element formulation was used to analyze a four-story composite

CFT frame structure subjected to a combination of gravity and wind loading. This frame

was taken from a feasibility study by Fetterer and Hajjar (1997) conducted to determine

the economy and strength of such frames using second-order inelastic analysis (SSRC,

1993; Hajjar et al., 1996¢). Figure 5.46 illustrates the members, geometry, structural

parameters, and unfactored loading. The frame is proportioned so as to achieve all

148



factored load combinations [specifically, a load factor of 1.0/0.9 = 1.11 times the factored
loads to account for the AISC LRFD (AISC, 1993) resistance factor in the analysis]
without collapsing due to combined geometric and material nonlinear behavior. In the

1 analysis for the AISC LRFD (1993) wind load combination, which controls the design, the
gravity and lateral loads are increased proportionally, so that at a load factor of 1.0, the
applied loads equal the factored loads for the load combination. The frame shown actually
| reaches its structural limit point at a load factor of approximately 1.4, thus yielding a safe
and serviceable design. The computational model utilizes the 18 DOF CFT beam-column
fiber element for the columns, and a comparable 12 DOF steel beam-column fiber element
for the girders (White, 1986; Morales, 1994). Twelve elements are used to model each
girder and column, and the fiber mesh densities at each cross section are similar to those

used for the CFT verification studies.
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Figure 5.46: Four-Story Frame Computational Model
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The AISC LRFD interaction equation values for the individual members were also
computed at a load factor of 1.0. Even at this load level, several of the columns exceeded
the allowable LRFD interaction equation value. The distributed plasticity analysis not only
indicates that the frame has a higher ultimate capacity, but also that the members are largely
elastic at a load factor of 1.0. This result illustrates the generally conservative approach that
design codes have adopted currently for CFT members.

Four cases were investigated to determine the effect of slip parameters on the
behavior of the frame. As seen in Fig. 5.46, in Case I the steel girder was assumed to
engage the concrete directly through the connection; no slip was permitted at the beam-to-
column joints, but slip was permitted along the length of each column between the joints.
In the other cases, the steel girder was assumed to engage only the tube, load was
transferred to the concrete through the slip interface, and the concrete was free to
protrude from the top of the column stack. Case II used the calibrated parameters for
Joona and kg, . In Case I, the value of ky;, was decreased to 10> MPa. In Case IV, the
value of f;,.s was decreased to 0.1 MPa. Each analysis was carried out to the limit point
of the structure.

Figure 5.47 shows the load-deformation response of this structure for Cases I and
II. Neither the load capacity nor the stiffness of the frame were affected when slip was
permitted at the beam-to column joints. In fact, thefe were no perceivable differences in
the entire load-deformation responses for any of the four analysis cases, thus indicating
that slip has a negligible effect on the overall load-deformation behavior of this frame.

However, the potential effects of slip on local behavior of CFT's are more evident.
Figure 5.48 shows the slip and bond stress along the length of each CFT column stack for
Cases II, III, and IV. The slip plotted as positive to the right of each column stack
indicates that the concrete core is moving vertically relative to the steel tube (i.e., it tends
to protrude through the top of the column stack). Figure 5.49 shows the axial force in the
concrete core and in the steel tube along the length of each CFT column stack for the
same cases. All results are shown at a load factor of 1.0 for the wind load combination.

The bond stress is not breached in Case II at this load level, although bond stresses exceed
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0.6 MPa at the top of each column stack at a load level just over 1.1. The concentration
of slip and bond stress at each connection is evident (Fig. 5.48), as is the gradual transfer
of load from the steel tube to the concrete core both above and below each connection.
The effects of tension just above many of the connections are evident as well, with the
compressive axial force in the steel tube decreasing rapidly over a short distance as a
portion of the gravity load at the floor level is carried by the tube above the connection as
well as below (Fig. 5.49b). However, the magnitude of the slip is relatively small in this
case, as may be expected for unbraced framing action, and it does not change significantly

even up to the failure load.
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Figure 5.47: Global Load-Deformation Response of the 4-Story Frame

For Case II1, the slip is an order of magnitude larger than for Case II because of
the reduced slip stiffness (Fig. 5.48a). Correspondingly, the transfer of load from the
connection regions occurs over nearly the entire length of each CFT column. As
compared to that of Case II, the concrete load for Case III is seen in Fig. 5.49 to increase
consistently along the member length, while the steel tube continuously sheds load to the
concrete along the tube length. In addition, because of this more gradual transfer of load,
the maximum interface stress values in the CFTs of Case III are seen to be well below

those of Case II (Fig. 5.48b).
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For Case IV, the bond stress of 0.1 MPa is breached at a load factor of 0.19.
Since the slip stiffness is small at locations which have breached fj..4, the bond stress is
effectively capped at this value, as is seen by the dotted line in Fig. 5.48b. The magnitude
of slip is more than double that of Case II at a factored load level of 1.0, and the transfer
of loads from the connections takes place over nearly the entire length of the CFT, as in
Case III (Fig. 5.49). The bond stress and slip profile at the failure load of the structure
(not shown) indicate substantially more slip and breaching of the bond strength occurring
along nearly the entire length of the three central CFT column stacks, indicating that
continued loading substantially increases the bond loss in these members.

The frame was also analyzed for the AISC LRFD (1993) gravity load combination
using the calibrated parameters to determine if loss of bond is detected under the increased
vertical loading. For this loading combination, the interface stress of 0.6 MPa was
breached at 0.68 times the factored load, suggesting that the increased vertical load that
must be transferred at connections due to factored gravity loading may cause bond loss in
CFT members before the design load level of the frame is reached.

For this specific frame, the top of each column stack consistently has the highest
magnitudes of slip and bond stress for all loading combinations. Capping the CFTs at the
top of the column stacks alleviates the slippage at that location, but localized slip in the
connection regions at each floor level is still seen when using the calibrated parameters.
Global behavior, however, is unaffected by slip in these analyses for all load combinations.
Of course, engaging the concrete directly in each connection, and thus restraining slip,

facilitates immediate transfer of the load to the connection region.
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Figure 5.48: Slip and Bond Stress in the Composite Frame at the Factored Design Load
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Chapter 6

Conclusions

The current research includes the formulation of a three-dimensional 18 DOF beam
finite element for geometrically and materially nonlinear analysis of square and rectangular
concrete-filled steel tube beam-columns. A fiber-based distributed plasticity formulation is
used, such that numerical integration is carried out through the cross section and along the
member length for both stiffness formulation and force recovery. The fiber element
approach is adopted because of its computational efficiency coupled with a high degree of
accuracy. This approach is able to model the spread of plasticity throughout the elements
using stress-strain relations at each material fiber, while retaining degrees-of-freedom only
at the centroidal axis of the two member ends. The formulation incorporates slip between
the steel tube and the concrete core, and it incorporates constitutive formulations which
model the significant behavior specific to CFTs. Geometric nonlinearity is modeled
comprehensively using a corotational formulation which captures all significant P-A and P-
d effects exhibited by beam-columns in braced or unbraced frame structures. A
comparable three-dimensional 12 DOF steel wide-flange beam element is also included
(following the formulation of White (1986)) which is used for modeling steel beams or
beam-columns as components in steel or composite frames. The current research is
geared for modeling either proportional or nonproportional monotonic loading, although
the formulation is extended by Hajjar et al. (1996e) and Molodan and Hajjar (1997) to

model cyclic loading. A global solution strategy is developed for analysis of three-
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dimensional composite frames composed of both 18 DOF CFT elements and 12 DOF steel
wide-flange elements.

A structural analysis computer program, CFTFiber, has been developed for
implementation of these finite element formulations, and has been used for calibration and
verification of the elements. The parameters which affect the nonlinear slip behavior of
the 18 DOF CFT element, including the initial slip stiffness of the steel/concrete interface
and the bond strength of that interface, are calibrated against experimental tests which
measured slip in CFTs, and several additional examples are provided for verification. The
calibration of the steel and concrete nonlinear material models is presented by Hajjar et al.
(1996€e) and Molodan and Hajjar (1997). The research concludes with verification of the
CFT element formulation for proportionally and nonproportionally loaded beams, beam-
columns, and composite subassemblages through comparison to over thirty experimental
tests.

This chapter summarizes the results of the current research, focusing on the
formulation for slip in CFTs. A discussion is presented on the accuracy of the current
formulation as compared to experimental tests. Finally, specific suggestions are presented
for future research on the nonlinear behavior of CFT beam-columns and composite CFT

frames.

6.1 Summary of Research on the 18 DOF CFT Finite Element

The effect of slip on the behavior of CFTs as part of composite frames has not
been thoroughly investigated. Consequently, inclusion of slip between the steel and
concrete portions of the element was a prime focus of this research for the finite element
formulation, as described in Chapter 2. The composite beam literature includes several
finite element formulations for slip between the steel beam and concrete slab in such
members (Amadio and Fragiacomo, 1993, Aribert, 1995). However, geometrically
nonlinear behavior of these members is not addressed, as such behavior may often be

neglected in composite beams. The current formulation includes a detailed derivation of
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the geometrically nonlinear stiffness matrices for an 18 DOF three-dimensional composite
beam-column element which includes slip between the steel and concrete.

Implementation of the element in a geometrically nonlinear global solution scheme
provided several insights into the use of such an element. First, the steel and concrete
translational stiffness must remain separated at the element ends in the local element
stiffness matrix because of the coupling of axial and shear stiffness of adjacent elements
during assembly of the global stiffness matrix. This requirement can be neglected if all the
elements are colinear, which is an implicit assumption in much of the composite beam
literature. For geometrically nonlinear analysis using the current finite element formulation,
however, the members may become skewed during the analysis, and thus they must retain
separate translational DOFs for the steel and concrete. This requirement necessitates the
use of shear compatibility constraints which insure that the only slip which occurs in these
elements is along the centroidal axis of the member. The penalty function approach was
chosen to impose these shear constraints. The penalty functions are applied to the global
stiffness matrix rather than the local element stiffness matrices to avoid redundant equations
which may result when multiple elements meet at different orientations at a global node.
For geometrically nonlinear incremental/iterative analysis, the global direction of the
penalty function is updated based on the rotation of the global node.

As described in Chapter 3, calibration of the nonlinear slip interface of the 18 DOF
element versus experiments on square and rectangular CFTs shows that the load-slip
behavior of this interface is generally bilinear. Only two parameters are therefore required
for the slip calibration, the initial slip stiffness of the steel/concrete interface, and the bond
strength of this interface. Comparison to experiments of steel I-girders framing into CFT
beam-columns with simple connections shows that the best prediction of the load transfer
from the steel to the concrete at such connections uses an initial slip stiffness of 10* MPa
and a bond strength of 0.6 MPa. The initial slip stiffness is in the range of values which
produces deformations similar to the case of perfect bond (i.e., perfect strain compatibility
between the steel and concrete). HoweQer, even at this high value of initial stiffness, some

gradual transfer of load from the steel to the concrete at the connections can be observed
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in both the computational model and the experimental results, suggesting that the current
formulation provides an accurate prediction of the slip strains at or near a connection of a
steel beam to a CFT column.

The calibrated value of bond strength is somewhat higher than the design
recommendations of the British standard for composite construction (BS5400, 1979),
which gives a value of 0.4 MPa, and the Japanese standard (AlLJ, 1980), which gives a
value of 0.1 MPa. These composite construction codes take into account other effects,
however, such as long-term loading, and inherently provide a factor of safety against loss
of bond. The calibrated parameters in the current research are not intended for application
to the design of such members. Rather théy are intended to be used for further research
on the effect of slip and bond on the overall behavior of square or rectangular CFTs as
part of composite frames.

Chapter 4 presents an overview of the material constitutive relationships adopted
in the current research. The steel constitutive model is able to capture the important
stress-strain characteristics observed experimentally for cold-formed square and
rectangular steel tubing, such as the nonlinear stress-strain response caused by the cold-
forming process, elastic unloading, and the different behavior of the steel and the corners
and flanges of a steel tube. The concrete constitutive model is able to capture the
gradually softening stress-strain curve observed in experiments for compressive loading.
The compressive post-failure branch of the curve is calibrated against CFT experimental
tests to provide an accurate prediction of the ductility of these members (Molodan and
Hajjar, 1997). A tensile model is implemented which is able to predict cracking as well as
crack closing upon reversal in the straining direction. The material constitutive models are
implemented for analysis of both CFTs and steel wide-flange beams.

In Chapter 5, a preliminary parametric study is performed on the moment-
curvature behavior of three flexural members tested by Lu and Kennedy (1994). Varying
the slip parameters substantially did little to change the nonlinear response of the
members. In addition, an example is provided of the analysis of a four-story, four-bay

composite unbraced frame composed of steel wide-flange beams framing into CFT
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columns with rigid connections. The effect of bond and slip restraint at the beam-to-
column connections is investigated for several different cases of slip parameters and
boundary conditions. The slip and bond stress at factored loads in each column stack is
reported, as is the transfer of load from the steel to the concrete. Restraining the beam-to-
column joints against slip has virtually no effect on the overall load-deformation behavior
of the structure -- as may be expected, the global frame behavior is similar for the frames
which have substantial slip and bond breakage along the column stack versus those where
slip is restrained. However, noticeable slip and bond stress occurs in the connection
regions, coupled with gradual transfer of axial force along each coiumn stack, if slip is
permitted along the full length of the column (regardless of whether slip is prevented at the
top of the column stack). The analysis indicates that the bond strength may be well be
breached for CFTs in unbraced frames in the local region of the connection, and that the
transfer of force to the concrete may occur over a long length of the member once bond is
breached. The effect of slip and bond loss may also result in local phenomenon such as
local buckling and localized material failure at connections, ultimately affecting the
strength and serviceability of the CFT. However, further parametric studies are required

to bolster the findings of this preliminary study.
6.2 Accuracy of the Current Finite Element Formulation

Over thirty verification examples are presented in Chapter 5, including
comparisons to experiments from six different researchers, for CFT beams, proportionally
and nonproportionally loaded beam-columns, and subassemblies of composite frame
structures. These examples include CFTs subjected to axial load plus either major or
minor axis bending, as well as biaxial bending. The examples include tests dominated by
materially nonlinear behavior (short members), geometrically nonlinear behavior (long
members under axial compression), and a combination of both. CFTs with a wide variety
of D/t ratios are investigated, which result in the steel and concrete contributing different

proportions of the total strength of the members. The calibrated parameters for slip, as
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well as the calibrated parameters for the steel and concrete constitutive models, are held
constant for all of these comparisons (noting that the parameters for annealed tubes are
different than those for tubes which are not annealed).

An analysis of the results is presented in Chapter 5. The computational model
(using the calibrated parameters) provides excellent predictive capability, with an
average error of 1.79% when compared to experimental results (this comparison is made
at the experimentally observed deformation level which corresponds to peak strength).

When the results are broken down into categories, several important distinctions
can be made. First, the model predicts the behavior of proportionally loaded beam-
columns with the best accuracy compared to other loading schemes. This is typical of
many computational models, in that proportional loading often exercises the least
complexity in the constitutive models. The model provides the least accurate prediction
for nonproportionally loaded beam-columns, due to the path-dependent nature of the
materials, although the error for these members is also quite low (6.05%). However, an
additional explanation is that the only nonproportionally loaded beam-column experiments
published in enough detail for use in verification have annealed steel tubing (Tomii and
Sakino, 1979a), which deviates from the calibrated parameters for the steel material model
(as mentioned previously). In addition, expansive mortar was used in the concrete in these
tests, perhaps having the unintended effect of adding confinement to the concrete near the
beginning of the test, thus increasing the ultimate strength of the concrete and slightly
lowering the yield strength of the steel tube. Such behavior is not accounted for in the
computational model.

The model also provides a more accurate prediction of the member strength for
cross-sections with a lower D/t ratio, indicating that the steel material model is more
accurate than the concrete material model. This result is not unexpected, as concrete is
not as homogeneous and consistent in properties as structural steel. In addition, the effect
of confinement has only been accounted for in an approximate fashion, through calibration
of the concrete constitutive model. Also, local buckling has been neglected, and may

influence the behavior of members with a high D/f ratio.
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6.3 Suggestions for Future Research

This research is part of an ongoing program at the University of Minnesota to
develop advanced analysis software for CFTs and composite frames. This work is the
second step in this program, being preceded by the development of a concentrated
plasticity finite element formulation for rectangular CFT's and composite frames by
Gourley and Hajjar (1994). Concurrent research includes calibration of the material
models for cyclic analysis by Molodan and Hajjar (1997).

Gourley and Hajjar (1994) identified several areas of experimental research which
are lacking, including experiments on CFTs with high strength steel and concrete, and with
a broader range of cross-sections. The current research also indicates that new
experimental tests could often include provisions for measuring slip and bond loss in
CFTs, as there are still relatively few experimental studies on slip in CFT beams, beam-
columns, composite frames, and connections.

Several refinements of the current computational formulation arise from the
conclusions presented in this chapter. First, there exists a need for comprehensive
computational models for composite connections of steel beams to CFTs, as well as
composite beams to CFTs. These models should account for the limiting cases of pinned
and rigid connections, as well as partially restrained connections. Such research has
initiated at the University of Minnesota. Second, inclusion of confinement of the concrete
core by the steel tube should be considered within the limitations of the fiber element
approach. The current research includes multiaxial material models and is intended for
future research which accounts for multiaxial effects. Third, the effect of local buckling of
the steel tube should be included, perhaps through modification of the stress-strain
relationships. Fourth, the current formulation could be extended to nonlinear analysis of
composite beams as members of stmctural frames. Finally, the current computational
model could be utilized to conduct a comprehensive set of parametric studies to determine

the effect of slip on CFT strength, ductility, and rigidity.
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Appendix A

Stiffness Matrices and Supplemental Information

This Appendix presents the natural (corotational) element stiffness matrices for
the 18 DOF beam finite element presented in Chapter 2. Other information about static
condensation of the midpoint DOF's and the expansion of the natural element stiffness
matrices to the local element stiffness coordinates is also included.

This Appendix is organized as follows. Section A.1 outlines the natural element
stiffness matrices. Section A.2 presents the static condensation procedure used to
condense the midpoint DOFs from the natural element stiffness matrix. Section A.3
shows the expansion from the natural element stiffness matrix to the local element 18

DOF stiffhess matrix.

A.1 Natural Element Stiffness Matrices

Tables A.1-A.3 at the end of this Appendix show the closed-form natural element

stiffness matrices which result from the corotational finite element formulation presented
in Chapter 2. These matrices include the small displacements stiffness matrix [K]* ], the

low-order geometrically nonlinear stiffness matrix [ K ;’f’ ], and the high-order

geometrically nonlinear stiffness matrix [ K ;"2” ]. These matrices are added together to

form the natural element stiffness matrix as shown in Equation A.1.
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[K™ =K ]+ K 1+ K}y ] (A.1)

Material nonlinearity is incorporated through variance of the steel and cdncrete moduli at
each fiber. If material nonlinearity is active in the analysis, these matrices are not
constructed in closed form, but are generated through numerical integration of the cross-
sectional rigidity as shown in Chapter 2. Additional information about the finite element

formulation can be found in Chapter 2. All symbols are defined in Appendix D.

A.2 Static Condensation of the Midpoint Degrees-of-Freedom

The current 18 DOF beam finite element formulation assumes that loads are
applied only at the ends of members. Therefore, the midpoint nodes associated with the
steel and concrete axial deformations are assigned no applied load. In addition, the actual
deformation of these midpoint nodes is of little use, as the cross sectional strains can be
recovered directly from the applied forces at the ends of the elements (see Chapter 2).
Using static condensation of the natural element stiffness matrix, the calculation of
deformations for the midpoint nodes can be avoided, thus reducing the number of local
element DOFs by 2.

The deformation vectors have been set up so that the following equivalent matrix

representation can be written:

[K™ {Ad™ } = {AF ™} (A.2)
where: {Ad™} is the vector of the natural element incremental deformations (in
the natural element coordinate system)
{Af™? is the vector of the natural element incremental forces (in the

natural element coordinate system)
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This equation may be partitioned as shown in Equation A.3, with the midpoint nodes
associated with the rows and columns s, and the remaining DOFs associated with the

rows and columns r.

{[K:;at] 2x12 [K:;al ]12x2 jH{Adnar }12x1} ~ {{Afnal }12x1} A3)

[K::zt ]2):12 [K;;al ]2x2 {Ad;;at }2xl - {Af;,’:m }2x1
where: {Ad!"} is the vector of midpoint incremental deformations

{AfI*} is the vector of midpoint incremental forces (equal to the null

n

vector).

Thus, through static condensation:

nat 12x12
[ Kmdemd} frgm Y < g (A4)

nat

where [K """d"”s“d} is the condensed natural element stiffness matrix:

[Kcondensed] - [Krnrat ]12x12 _ [Krr;at ]12x2 [[K;:.at ]2x2 ]-1 [K:;J[ ]2x12 (AS)

A.3 Expansion to the Local Element Stiffness Matrix

The expansion from the natural coordinate system to the local coordinate system
for the conventional 12 DOF beam finite element has been presented by Chen and Lui
(1987), Yang and Kuo (1994), and others. This transformation for the 18 DOF beam
finite element used in the current research differs slightly, in that the steel and concrete

have separate translational and rotational DOFs in the natural element stiffness matrix
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(see Section A.1). In addition, because the steel and concrete rotations are assumed to be
equal along the length of the element, the separate rotational DOFs in the natural system
are combined into a single set of rotational DOFs in the local system.

In the expansion from the natural system to the local system, three rigid-body

translations and three rigid-body rotations are accounted for. Figure A.1 shows the

positive sign convention for the local element forces and deformations.

y

10 13 16 x

Figure A.1: Positive Sign Convention for Local Element DOFs

While the axial forces, bending forces, and deformations may be translated to the
local coordinate system using a transformation matrix, the element end shear forces must
be computed in the local coordinate system using static equilibrium of the natural element
forces. For the geometrically nonlinear finite element formulation, the rigid body
deformation of the element must also be accounted for when computing the element shear
forces. This is accomplished by considering the natural element forces which act in the
Cl1 direction at the beginning of the load step. Due to rigid body rotation of the element,
the element end axial force causes additional shear forces. The additional force is
computed by taking moments about the end of the element in the C2 configuration. The
geometrically nonlinear shear forces which result from the element axial force have been

referred to as the "external stiffness" by Yang and Kuo (1994) and others.
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For the 18 DOF beam finite element, the separate steel and concrete axial forces
and shears require special consideration. The steel axial force is assumed to affect only
the steel shear forces, and the concrete axial force is assumed to affect only the concrete
shear forces. The steel and concrete axial forces also change along the length of the
element, according to the finite element formulation for slip. As mentioned in Chapter 2,
the variation of the axial forces is assumed to be linear along the length of the element,
and is equivalent to a uniformly distributed axial force traction along the element length.
Figure A.2 shows a planar representation of how the steel and concrete axial forces affect

the element shears.

N\ y Or Z ch
N
1
P°+ PO
VI;B VI:B =( i 2/) RB
PC
'y \l/ d;
<
4
X
7

Figure A.2: External Stiffness for the 18 DOF Beam Finite Element

In this figure, the shear deformation at the i-end of the member (d;) and the shear
deformation at the j-end of the member (d, ) are measured with respect to the natural

coordinate system at C1. The length of the element used in the equations is the distance
between the i and j end nodes of the element at C1. The rigid-body rotation of the
element is assumed to represented by the rigid-body deformation divided by the length.

The distributed axial load is assumed to linear with a magnitude of { P° = P/ — P*.
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Using this relationship in three-dimensions, the complete relationship between the
natural element forces and the local element forces (which include the rigid-body modes

of deformation) can be formed. Equation A.6 shows the matrix representation of this

transformation. Table A.4 shows the transformation matrix [Q 12

(AFEY = [Q]ISxIZ (AFry 12 (rb) 1o (A.6)

where: {Af°}"®* is the vector of local element incremental forces

[Q]mx12 is the natural-to-local transformation matrix
{Af"* ¥ is the vector of natural element incremental forces

{rb}'*"! is the vector containing the rigid-body geometrically nonlinear

force terms (external stiffness)

A second relationship must be developed between the natural element
deformations and the local element deformations. This relationship involves only
kinematic relationships, and furthermore, must be the identical transformation used for
the element forces (Cook, 1981). Equation A.7 shows how this relationship is applied to

transform the local element deformations to the natural element deformations.
nat 3 12x1 o ey 18x1
(a2 = o] ] (Ad°) | (A7)

where: {Ad°}"®" is the vector of local element incremental deformations

{Ad™ 3} is the vector of natural element incremental deformations

Equations A.6 and A.7 are substituted into the natural element force-deformation

relationship, and the expression for the local element stiffness matrix results. Equation
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A.8 shows the matrix for the transformation from the natural element stiffness matrix to

the local element stiffness matrix.
[Ke ]8X18 _ [Q]ISxIZ [Knat ]2x12 H:Q]T]les n [RB]18x18 (A8)

where: [ ¢ ]‘M18 is the local element stiffness matrix, including geometric
nonlinear terms
[K nat ]2x12 is the natural element stiffness matrix, including
geometric nonlinear terms
[Q]lsx12 is the natural-to-local expansion matrix

[RB]mx18 is the matrix containing the rigid body geometric nonlinear |
stiffness terms (Table A.5) |
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Appendix B

CFTFiber Program Verification

This appendix provides examples which verify the accuracy of the second-order
finite element formulations employed in the computer program CFTFiber. The 12 degree-
of-freedom (DOF) beam element used to model wide-flange members, and the 18 DOF
beam element with slip used to model CFT members are evaluated using comparisons to
benchmark problems. This Appendix presents verification of the geometrically
nonlinear, materially elastic analysis capabilities of the program, but an additional
verification problem is presented for verification of the 12 DOF steel beam element
which includes material nonlinearity.

A variety of planar frame systems are examined under loading which induces
geometrically nonlinear behavior. The results of the analyses are compared to benchmark
test problems from Clark, et al. (1993) who presented the solutions to planar elastic
buckling problems based on the solution to stability functions, and Mattiasson (1981)

who solved large deflection elastica problems using elliptical integrals.

B.1 12 DOF Steel Element Verification

The 12 DOF beam finite element formulation, adapted from White (1986) and
Yang and Kuo (1994) is used in this work to model the behavior of steel wide-flange

sections. This element employs 3 translational and 3 rotational DOFs at each end node.
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B.1.1 Geometric Nonlinear Analysis

Example problems are presented which test the accuracy of both the geometric
nonlinear matrix formulation and the incremental/iterative Newton-Raphson solution
scheme employed by CFTFiber. For the following analyses, all members are assumed to
have linear elastic material, and to be doubly symmetric, and prismatic. Geometrically
nonlinear effects which are modeled include the P-A effect (member chord rotation), the
P-d effect (member éurvature), and changing length due to axial shortening. Axial
shortening caused by member curvature (the bowing effect) is not modeled by CFTFiber.
The effect of element discretization, incremental solution algorithms, and load step size

are investigated.

B.1.1.1 Detection of Euler Buckling

An important characteristic of the geometrically nonlinear formulation is the
ability to accurately determine the point at which a member becomes unstable and
buckles. The two problems presented in this section test the ability of the 12 DOF beam
element to detect the elastic Euler buckling load. Figure B.1a shows an axially loaded
cantilever and Figure B.1b shows a simply-supported column. Both columns are loaded

with a concentric axial load with no initial imperfections in the members.

- The buckling loads for these cases are given by:

2
) , - A (B.1)
QL)
2
b B =T (B2)
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I=4.16x10" mm*
A = 6.45x10° mm?
L =3.05x10° mm

E =200 Gpa

L |

o
e

b) Simply-Supported Column |

a) Fixed-Free Column

e

} L

Figure B.1. Euler Columns |

Table B.1 compares the computational and anglytical buckling loads for each case
shown above for 1, 3, and 5 elements per column. In the computational solution, the
buckling load is defined as the load at which a limit point is detected. White and Hajjar
(1991) state that three elements are sufficient to model the buckling load for both cases
with a geometrically nonlinear formulation similar to that used in this work. The current
computational formulation using 3 or more elements per column predicts the Euler

buckling load with excellent accuracy.

Table B.1. Euler Buckling Loads (in kN)

Fixed-Free Simply- % error % error
Column Supported Fixed-Free Simply-
Column Supported
Theory 2210 8841 -- --
1 elem 2227 10755 0.76% 22.0%
3 elems 2211 8856 0.016% 0.17%
5 elems 2210 8844 0.0060% 0.030%
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B.1.1.2 Two Span Beam-Column

A two span beam-column with axial load and symmetric transverse point loads at
the midpoints of the beams is shown in Fig. B.2. This problem may assume two possible
buckled shapes, as indicated in Fig. B.2. The buckling load for the mode with perfect
symmetry about the center support is 16164 kN, whereas the asymmetric mode (lower
energy mode) has a critical buckling load of 7904 kN. Due to numerical rounding which
occurs during analysis and the asymmetric support conditions, the asymmetric mode is

always detected if the structure is not fixed against rotation at the center support.

‘ E =200 GPa
I=1.00x10" mm*

T T 77 A= 6.45x10° mm?

symmetric mode L =5.00x10° mm

V=200 kN

asymmetric mode

Figure B.2. Two Span Beam-Column with Buckling Modes

The analysis is performed using a total of eight elements (four in each span) and a
constant axial load increment (AP = 2.0 kN). The transverse load is applied first, and
then the axial load is increased linearly. The incremental/iterative Newton-Raphson
solution strategy is used. The program detects a limit point at P = 7886 kN (0.2% error),

and the deformed shape conforms to the asymmetric buckling mode. Table B.2 shows
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the results of the analysis compared with the results of a stability function analysis of the

problem for different levels of axial force (Clarke, et al., 1993).

Table B.2. Two Span Beam-Column

Stability Function Analysis Results
CFTFiber Results
Percent Error
P (kN) v, (mm) v, (mm) My (kN-m) | M, (kN-m) | M, (kN-m)

2000 12.88 12.88 207.4 172.1 172.1
12.73 12.73 207.4 172.2 172.2

1.18% 1.18% 0.0% 0.07% 0.07%

4000 14.88 14.88 233.4 192.8 192.8
14.50 14.50 2324 192.2 192.2

2.56% 2.56% 0.38% 0.29% 0.29%

6000 17.63 17.63 269.1 221.1 221.1
16.89 16.89 265.9 219.0 219.0

4.18% 4.18% 1.18% 0.97% 0.97%

B.1.1.3 Cantilever With Lateral and Axial Load

This example tests the behavior of a cantilever beam under axial compression and
lateral loading. This loading induces P-A and P-6 effects in the beam. This problem tests
the accuracy of the internal force computation as well as deformations. The transverse tip
deflection and base moment are compared to the stability function solution given in
Clarke et al. (1993). Figure B.3 illustrates the cantilever beam-~column and applied loads.
The transverse load V' is held constant for the analysis, and the axial load is increased
linearly, with a constant axial load increment of AP =2.5 kN. The incremental/iterative
Newton-Raphson solution scheme is employed in this set of analyses.

The results shown in Table B.3 indicate a reduction in accuracy with increasing
axial load, a trend which has been observed by other researchers (Gourley and Hajjar,
1994). This trend is observed for the current analysis, but the inaccuracy remains small,

partially due to the small axial load increment. The last row of Table B.3 demonstrates
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that a 100X increase in the size of the load step reduces the accuracy of the analysis, but

only slightly. The data also indicates an increase in accuracy for a greater number of

elements, although this trend is only noticeable for higher values of axial load.

| E=200 GPa
v 10 I=1.00x10 mm"*
\> \v y A=1.00x10* mm?
7 L=500x10° mm
— S u V=10kN
| P.,.=1975kN
Figure B.3. Cantilever with Transverse and Axial Load
Table B.3. Cantilever Moments and Deflections
CFTFiber Results
Percent Error
P (kN) # elements u (mm) v (mm) M (kN-m)
250 stability funct. 0.691 23.80 55.96
3 0.693 23.84 56.05
-0.368 -0.149 -0.170
5 0.693 23.88 56.06
-0.368 -0.342 -0.192
500 stability funct. 1.341 27.78 63.89
3 1.344 27.75 63.98
-0.189 0.119 -0.136
5 1.346 27.86 64.03
-0.379 -0.302 -0.228
750 stability funct. 2.009 33.38 75.02
3 2.009 33.24 75.04
0.000 0.434 -0.032
5 2.014 33.47 75.21
-0.253 -0.259 -0.261
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Table B.3. (cont’d)

CFTFiber Results
Percent Error
P (kN) # elements u (mm) v (mm) M (KN-m)

1000 stability funct. 2.710 41.83 91.81
3 2.710 41.52 91.65

0.000 0.753 0.175

5 2.718 41.94 92.07
-0.281 -0.255 -0.287

1250 stability funct. 3.510 56.09 120.1
3 3.498 55.45 119.5

0.362 1.15 0.513

5 3.513 56.25 120.5
-0.072 -0.290 -0.327

1500 stability funct. 4.641 85.27 1779
3 4.600 83.91 176.1

0.876 1.60 1.00

5 4.648 85.65 178.7
-0.164 -0.450 - -0.473

1750 stability funct. 8.280 178.1 361.7
3 8.072 175.1 357.0

2.52 1.69 1.31

5 8.372 180.7 366.8

-1.10 -1.47 -1.43

5 8.402 181.4 368.0

(AP =250kN) -1.47 -1.87 -1.76

B.1.1.4 Large Deflection Cantilever Beam Example

This verification of the geometrically nonlinear formulation consists of a
cantilever beam subjected to a concentrated transverse tip load (Fig B.4.). This problem
is intended to demonstrate the accuracy of the formulation for large deformations. The
elastica solution is presented by Mattiasson (1981), who used elliptical integrals to obtain

results for large deformation problems. The theoretical solution ignores elongation of the
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element due to axial loading. Some error is introduced in the finite element formulation

by assuming a finite value for the axial rigidity of the elements.

E =200 GPa
I=4.16x10" mm*

|
|
|
|
|
I/
____________________________ L

\ v A= 6.45x10° mm®
/N L=3.05x10° mm

K, V=3.58x10°kN

Figure B.4. Cantilever Beam with Transverse Tip Load

Table B.4 shows the analysis results for 3 or 5 elements using either 100 or 1000
load increments with a simple-step incremental solution scheme. Results for an
incremental/iterative Newton-Raphson solution scheme using 50 and 100 solution steps
are also presented. The final row of Table B.4 presents the solution for the problem when
a much higher cross-sectional area (A = 6.45x10’ mmz). For this example, 5 elements are
used along the length. It is important to note that the higher value of area causes
numerical errors to occur in the force-recovery procedure unless a very small step size is
used. Three hundred steps were required in order to achieve a solution without large,
accumulating numerical errors, and four hundred steps were required to achieve results
with comparable accuracy to the other examples in the table.

Additional elements or load increments do not add significant accuracy to the
analysis. The updated Newton-Raphson solution scheme using 100 steps provides
significant improvement over the simple-step strategy using 1000 steps.

The results in Table B.4 indicate that finite element analysis of large deflection
problems does not yield solutions which are as accurate as Euler buckling analysis or
small deflection problems, due primarily to simplifying assumptions made in the finite

element formulation. For the finite element solutions given in Table B.4, an increasing
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number of elements does not generally increase the accuracy of the analysis. This may

also be attributed to the assumption of small deflections in the finite element formulation.

Table B.4. Cantilever Tip Deflections

(e is the distance from the theoretical tip location)

Discretization v/L w/L % error | % error | Total # of e/L
(v/L) (u/L) matrix
factorizations
Theory 0.6700 [ 0.3289 - - -
Simple Step Solution Scheme
3 elems, 100 steps | 0.6952 | 0.3439 3.76 4.56 100 0.0183
3 elems, 1000 steps | 0.7090 | 0.3717 5.82 13.01 1000 0.0261
5 elems, 100 steps | 0.6975 | 0.3598 4.10 9.40 100 0.0221
5 elems, 1000 steps | 0.7036 | 0.3731 5.01 13.4 1000 0.0255
Newton-Raphson Solution Scheme
3 elems, 50 steps 0.6849 | 0.3250 2.22 -1.19 179 0.0096
3 elems, 100 steps | 0.7040 | 0.3610 5.07 9.76 300 0.0235
5 elems, 50 steps | 0.6962 | 0.3567 3.91 8.45 179 0.0212
5 elems, 100 steps || 0.7016 | 0.3688 4.72 12.13 300 0.0244
Simple Step Solution Scheme, A = 6.45x10" mm”

5 elems, 400 steps, | 0.6859 | 0.3366 2.37 2.34 400 0.0140

Figure B.5 shows the deformed shape of the member drawn to scale for the case
of 5 elements and 100 load steps using the incremental/iterative Newton-Raphson
procedure. This figure indicates the extreme deformation of the member under the
applied loading. Also shown is the theoretical tip location according to the elastica
solution from Mattiasson (1981). Since this level of deformation is not expected in the
current research, these results are assumed to be sufficient for analysis of members which

undergo moderate rigid body motion.
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0.750— Theory

Figure B.S: Deflected Shape of the Cantilever Beam
B.1.1.5 Harrison Portal Frame

The rectangular portal frame with pinned base shown in Figure B.6 has been used
as a benchmark problem for testing second-order elastic analysis (Clarke et al., 1993).
An analysis of the frame was conducted using three elements per column and three
elements for the girder. The results of the analysis using the incremental/iterative
Newton-Raphson solution scheme and a constant load increment of AV = 0.4448 kN are
compared to the stability function analysis solution from Clarke et al. (1993) in Table
B.5. Horizontal sway at the point where the horizontal load is applied, as well as the
maximum moment in the structure, are compiled.

Table B.5 shows the accuracy of the geometric nonlinear formulation employed
by CFTFiber. The results compare well with the stability function analysis, even for the
small number of elements used. As the loads increase, the error becomes larger,
indicating an accumulating error. The final row of Table B.5 shows the analysis using a
much larger load increment. The larger load increment does not appear to affect the
solution accuracy. Again this demonstrates the accuracy of the incremental/iterative

Newton-Raphson solution technique.
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E=207 GPa
I=4.16x10" mm*
A= 6.45x10° mm”®
I L=7.64x10° mm
V=100H
H=0.4448, 0.8896, 1.3344,
1.7792, 2.224 kN
WA AN
z L ——
Figure B.6. Harrison Portal Frame
Table B.5. Frame Sway and Maximum Moment
Stability Function Analysis
CFTFiber Results
Percent Error
V (kN) Sway (mm) M, (kN-m)
44 .48 7214 69.04
7.163 69.04
0.707% 0.000%
88.96 18.62 1394
18.44 139.3
0.967% 0.001%
133.44 38.02 211.7
37.54 2114
1.26% 0.109%
177.92 77.47 286.6
76.15 286.2
1.70% 0.119%
222.40 205.8 370.5
200.3 369.7
2.65% 0.216%
222.40 205.8 370.5
(AV = 8.896 kN) 200.3 369.7
2.65% 0.216%
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B.1.2 12 DOF Steel Beam Element Material and Geometric Nonlinear Analysis
Verification

Chen and Toma (1994) present a discussion of verification fé)r advanced analysis
finite element formulations which model the behavior of steel frames. They suggest
which significant geometric and material phenomena are practical to model in advanced
analysis software. The program CFTFiber includes the major attributes for steel wide-
flange members which are discussed by Chen and Toma, including geometrically
nonlinear analysis, material nonlinearity with path-dependent materials, and residual
stresses.

Chen and Toma (1994) also discuss the criteria for calibration problems which
can be used to verify advanced analysis software. They present an analysis by White
(1986) for a single bay portal frame which includes spread of plasticity fiber analysis,
geometric nonlinearity, and residual stresses. The finite element mesh is provided, as
well as detailed information on loading and material models. CFTFiber has the capability
to closely model this frame up to the structural limit point. This problem will be used as
a final verification problem for the 12 DOF steel beam element to demonstrate materially
and geometrically nonlinear capabilities of CFTFiber.

Figure B.7 shows the relevant finite element meshing and properties for the
problem. Figure B.8 shows the fiber mesh and residual stress pattern used.

Figure B.9 shows a comparison of the computational results from CFTFiber with
White’s results (White, 1986) (using no rigid links in White's analysis). The results of
the current analysis compare well with the solution according to White. The discrepancy
in maximum load and initial elastic slope may be attributed to the modeling of fillets in
the cross-section of the wide-flange beams in CFTFiber. White did not include fillets in
the cross-section grid. An additional data series in Figure B.9 shows that the current
computational model provides nearly identical results to White’s model when the fillets
are removed from the cross-sectional grid. Also, the force recovery scheme employed in
CFTFiber differs slightly from White (1986) in the way that high order geometrically
nonlinear terms are accounted for. The materially nonlinear analysis in CFTFiber for this
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example employs Prager's model for steel with an initial slope of 200 GPa and a strain
hardening slope of 690 MPa. Chen and Toma (1994) (from which White’s data was

scaled) suggest that White used the same material model

P P All Members 203x203x11x7.2
E =200 GPa

Eg =690 MPa
f,=248 MPa
f,=82.7MPa

H>v N

L=3525 mm
12 elements

A A

L=3525 mm
12 elements

Figure B.7. Calibration Frame (White, 1986)
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Figure B.8. Fiber Mesh and Residual Stress Pattern (White, 1986)
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Figure B.9. Comparison with Portal Frame from (White, 1986)

B.2 18 DOF CFT Element Geometrically Nonlinear Analysis
Verification

The 18 DOF formulation has been presented in Chapter 2 and Appendix A. In
order to verify the geometrically nonlinear stiffness formulation, elastic material behavior
is assumed for both steel and concrete. The exact problems for Section B.1.1 can be
replicated with the 18 DOF element by adjusting the material properties of the 18 DOF
elements so that their axial and bending rigidity are the same as the corresponding 12
DOF wide-flange element. In the following example problems, the effect of separate
materials is tested by adjusting the ratio of concrete-to-steel rigidity from approximately
0.5 to approximately 0.0. The ratio 0.0 permits modeling of hollow steel tube beam-
columns. This modeling uses the 18 DOF element stiffness matrix with very low axial
and bending rigidity assigned for the concrete. Use of the hollow tube section serves to
verify the steel portion of the stiffness formulation. In all the analyses, slip is prevented
between the steel and concrete at each joint through the use of penalty functions as

described in Section 2.2.2.
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B.2.1 Detection of Euler Buckling

The two problems presented in this section test the ability of the 18 DOF beam
element to detect the elastic Euler buckling load. Figure B.la in Section B.1.1.1 shows
an axially loaded cantilever and Figure B.1b shows a simply-supported column. Both
columns are loaded with a concentric axial load with no initial imperfections in the
members. For the 18 DOF CFT element, the bending rigidity EI can be estimated as the
sum of the steel and concrete bending rigidity. For both of the column configurations, the
bending rigidity of the steel and concrete portions of the columns are adjusted as shown
in Table B.6 to test the accuracy of the finite element formulation and to determine if the

separate materials have any effect on the accuracy of the results.

Table B.6. Material Properties for Euler Buckling Example

EIS/E fot EIC/E ftot EAb/E tot EA(:/E fot
Case I 1.0 0.0 1.0 0.0
Case 2 0.5 0.5 0.999914 0.000086

Table B.7 compares the computational and analytical buckling loads for the two
configurations with 1, 3, and 5 elements per column. The current 18 DOF finite element

formulation using 3 or more elements per column predicts the Euler buckling load with

excellent accuracy. There is no effect in the accuracy of the solutions when the

proportion of rigidity for the steel and concrete is changed.
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Table B.7 Euler Buckling Loads (in kN)

Fixed-Free Simply- Y%error %oerror
Column Supported Fixed-Free Simply-
Column Supported
Theory 2210 8841 -- -
Case I Material Properties
1 elem 2227 10751 0.769% 21.6%
3 elems 2210 8855 0.012% 0.158%
5 elems 2210 8843 0.004% 0.025%
Case I Material Properties
1 elem 2227 10751 0.769% 21.6%
3 elems 2210 8855 0.012% 0.158%
5 elems 2210 8843 0.004% 0.025%

B.2.2 Two Span Beam-Column

A two span beam-column with axial load and symmetric transverse point loads at

the midpoints of the beams is shown in Figure B.2 of Section B.1.1.2. This problem may

assume two possible buckled shapes, with the lower energy mode having a critical

buckling load of 7904 kN. Two cases similar to those presented in the previous section

are again used to determine the effect of the steel and concrete portions of the element

stiffness matrices. The material properties for each case are shown in Table B.8.

Table B.8. Material Properties for Two Span Beam-Column Example

EI°/EI™ EI¢/EI"™ EA*| EA™ EA°| EA"™
Case ] 1.0 0.0 1.0 0.0
Case 2 0.5 0.5 0.99866 0.00134

The analysis is performed using a total of eight 18 DOF CFT elements (four in

each span) and a constant axial load increment (AP = 2.0 kN). The transverse load is

applied first, and then the axial load is increased linearly. The incremental/iterative
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Newton-Raphson solution strategy is used. The program detects a limit point at P =

7886.3 kN (0.2% error), and the deformed shape conforms to the asymmetric buckling

mode. Table B.9 shows the results of the analysis for both cases compared with the

results of a stability function analysis of the problem for different levels of axial force

(Clarke, et al., 1993). The results of CFTFiber show excellent accuracy when compared

with the results of the stability analysis. There is no difference in results between the two

cases from Table 8.

Table B.9. Two Span Beam-Column

Stability Function Analysis Results

CFTFiber Results
Percent Error
P (kN) v, (mm) v, (mm) M, (kN-m) | M, (kN-m) | M, (kN-m)
Case I Material Properties

2000 12.88 12.88 207.4 172.1 172.1
12.73 12.73 207.4 172.2 1722
1.18% 1.18% 0.0% 0.07% 0.07%

4000 14.88 14.88 2334 192.8 192.8
14.50 14.50 2324 192.2 192.2
2.56% 2.56% 0.38% 0.29% 0.29%

6000 17.63 17.63 269.1 221.1 221.1
16.89 16.89 265.9 219.0 219.0
4.18% 4.18% 1.18% 0.97% 0.97%

Case Il Material Properties

2000 12.88 12.88 207.4 172.1 172.1
12.73 12.73 207.4 172.2 172.2
1.18% 1.18% 0.0% 0.07% 0.07%

4000 14.88 14.88 2334 192.8 192.8
14.50 14.50 232.4 192.2 192.2
2.56% 2.56% 0.38% 0.29% 0.29%

6000 17.63 17.63 269.1 221.1 221.1
16.89 16.89 265.9 219.0 219.0
4.18% 4.18% 1.18% 0.97% 0.97%
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B.2.3 Cantilever With Lateral and Axial Load

This example tests the behavior of a cantilever beam under axial compression and
lateral loading. Figure B.3 of Section B1.1.3 illustrates the cantilever beam-column and
applied loads. Again, the relative rigidity of the steel and concrete portions of the
elements are varied to test the effect each has on the computational results (Table B.8).
In each analysis, the transverse load V is held constant, and the axial load is increased
linearly, with a constant axial load increment of AP = 2.5 kN. The incremental/iterative

Newton-Raphson solution scheme is employed in this set of analyses.

Table B.10. Material Properties for Cantilever Beam Example

EIS/E tot EIC/E lot EAb/E fot EAC/E 1ot
Case I 1.0 0.0 1.0 0.0
Case 2 0.5 0.5 0.146 0.854

Table B.11 shows the analysis results for case I. The results for case II show only slight
differences compared to case I and are therefore omitted from the table. These results are

also identical to the results for the 12 DOF element which has the same rigidity as the 18

DOF CFT element (See Table B.3 in Section B.1.1.3).

Table B.11. Cantilever Moments and Deflections

CFTFiber Results
Percent Error
P (kN) # elements u (mm) v (mm) M (kN-m)

250 stability funct. 0.691 23.80 55.96
3 0.693 23.84 56.05

-0.368 -0.149 -0.170

5 0.693 23.88 56.06

-0.368 -0.342 -0.192
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Table B.11. (cont’d)

CFTFiber Results
Percent Error
P (kN) # elements u (mm) v (mm) M (KN-m)

500 stability funct. 1.341 27.78 63.89
3 1.344 27.75 63.98
-0.189 0.119 -0.136

5 1.346 27.86 64.03
-0.379 -0.302 -0.228

750 stability funct. 2.009 33.38 75.02
3 2.009 33.24 75.04
0.000 0.434 -0.032

5 2.014 33.47 75.21

-0.253 -0.259 -0.261

1000 stability funct. 2.710 41.83 91.81
3 2.710 41.52 91.65

0.000 0.753 0.175

5 2.718 41.94 92.07
-0.281 -0.255 -0.287

1250 stability funct. 3.510 56.09 120.1
3 3.498 55.45 119.5

0.362 1.15 0.513

5 3.513 56.25 120.5
-0.072 -0.290 -0.327

1500 stability funct. 4.641 85.27 177.9
3 4.600 83.91 176.1

0.876 1.60° 1.00

5 4.648 85.65 178.7
-0.164 -0.450 -0.473

1750 stability funct. 8.280 178.1 361.7
3 8.072 175.1 357.0

2.52 1.69 1.31

5 8.372 180.7 366.8

-1.10 -1.47 -1.43

5 8.402 181.4 368.0

(AP =250 kN) -1.47 -1.87 -1.76
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B.2.4 Large Deflection Cantilever Beam Example

This verification of the 18 DOF element geometric nonlinear formulation consists
of a cantilever beam subjected to a concentrated transverse tip load (Fig B.4 of Section
B.1.1.4). This problem is intended to demonstrate the accuracy of the formulation for
large deformations and to test the penalty function technique for imposing shear
compatibility between the steel and concrete in the 18 DOF elements. As in the previous
sections, two cases are included to study the effect of varying steel and concrete
properties on the behavior of the element. Table B.12 gives the material properties for

the two cases.

Table B.12. Material Properties for Large Deflection Example

EI*] EI™ EI°/EI™ EA°/ EA™ EA°/ EA™
Case ] 1.0 - 0.0 1.0 0.0
Case 2 0.5 0.5 0.99138 0.00862

Table B.13 shows the analysis results for 3 or 5 elements using either 100 or 1000
load increments with a simple-step incremental solution scheme. The solution using
either case I or II is identical to the solution for the 12 DOF analysis of Section B.1.1.4.
This result shows that the 18 DOF element geometrically nonlinear stiffness formulation
is equivalent (within computer precision) to the 12 DOF element formulation under
materially elastic conditions for a large deflection problem. This is significant because it
demonstrates that the penalty function technique for ensuring shear deformation
compatibility between the steel and concrete results essentially in the same solution for
deflections as the 12 DOF element, even though the penalty function technique is
approximate. Also, the method developed for updating the global direction of the penalty
functions during geometrically nonlinear analysis remains stable during large deflection

problems.
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Table B.13. Cantilever Tip Deflections

(e is the distance from the theoretical tip location)

Discretization v/L w/L % error | % error Total # of e/l
(/L) (w/L) matrix
factorizations
Theory 0.6700 | 0.3289 -- -- --
Simple Step Solution Scheme: Case I
3 elems, 100 steps [ 0.6952 | 0.3439 3.76 4.56 100 0.0183
3 elems, 1000 steps | 0.7090 | 0.3717 5.82 13.0 1000 0.0261
5 elems, 100 steps | 0.6974 | 0.3597 4.10 9.40 100 0.0221
5 elems, 1000 steps | 0.7036 | 0.3731 5.01 13.4 1000 0.0255
Simple Step Solution Scheme: Case II
3 elems, 50 steps 0.6952 | 0.3439 3.76 4.56 100 0.0183
3 elems, 100 steps || 0.7090 | 0.3717 5.82 13.0 1000 0.0261
5 elems, 50 steps 0.6974 | 0.3597 4.10 9.40 100 0.0221
5 elems, 100 steps | 0.7036 | 0.3731 5.01 13.4 1000 0.0255

B.2.5 Harrison Portal Frame

The rectangular portal frame with pinned base shown in Figure B.10 is analyzed
using a combination of 12 DOF steel beam elements and 18 DOF CFT elements. The
analysis of the frame is conducted using three CFT elements per column and three steel
beam elements for the girder. This problem demonstrates the ability of the analytical
formulation to combine 12 and 18 DOF elements in the global structural system while
retaining the geometrically nonlinear characteristics of both.

The material characteristics of the elements are given in Table B.14. Note that the
equivalent stiffness of the CFT elements (as discussed in Section B.2.1) is the same as the

steel beam elements.
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Table B.14. Material Properties for Portal Frame Example

EI*/EI"™ EI¢/EI™ EA*| EA™ EA¢/ EA™
12 DOF elements 1.0 N.A. 1.0 N.A.
18 DOF elements 0.5 0.5 0.138 0.862

The results of the analysis using the incremental/iterative Newton-Raphson
solution scheme and a constant load increment of AV = 0.4448 kN are compared to the
stability function analysis solution from Clarke et al. (1993) in Table B.15. Horizontal
sway at the point where the horizontal load is applied, as well as the maximum moment
in the structure, are compiled. Note that the moment in an 18 DOF CFT element is

computed as the sum of the moments from the steel and concrete portions of the element.

L

12 DOF steel beam elements

18 DOF CFT elements— |

A A

L

" Figure B.10. Harrison Portal Frame

These results shown in Table B.15 are essentially identical to the analysis of the
same problem using 12 DOF elements only. This problem demonstrates that the

technique for combining 12 and 18 DOF elements remains stable during geometrically
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nonlinear analysis, and that the analysis is as accurate as the same analysis using only 12

DOF elements.

Table B.15. Frame Sway and Maximum Moment

Stability Function Analysis
CFTFiber Results
Percent Error
V (kN) Sway (mm) M,,,. (KN-m)
44.48 7.214 69.04
7.163 69.04
0.707% 0.000%
88.96 18.62 1394
18.44 139.3
0.967% 0.001%
133.44 38.02 211.7
37.54 2114
1.26% 0.109%
177.92 77.47 286.6
76.15 286.2
1.70% 0.119%
222.40 205.8 370.5
200.3 369.7
2.65% 0.216%

B.3 Discussion

This appendix provides verification examples for both the 12 DOF beam finite
element and the 18 DOF beam finite element geometrically nonlinear formulations. The
example problems demonstrate the accuracy of the two formulations under various
geometrically nonlinear conditions including Euler buckling, moderate and large flexural
deflections, and deflections of indeterminate frame structures. An example problem is

presented which demonstrates the accuracy of the current formulation for combined
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materially and geometrically nonlinear analysis of an indeterminate structure composed
of 12 DOF wide-flange beam-column elements.

The verification problems indicate that the 18 DOF formulation is essentially
equivalent to a comparable 12 DOF formulation under the conditions of materially elastic
and geometrically nonlinear analysis, assuming perfect bond between the steel and
concrete. In addition, the composite structural frame of Section B.2.5 demonstrates that a
structure made up of both 12 and 18 DOF elements behaves identically to the same
configuration made up of 12 DOF elements only. The large deflection problem of
Section B.2.4 provides verification of the penalty function method for ensuring shear
compatibility between the steel and concrete under large deflection geometrically
nonlinear conditions.

For all problems, the error measured between the analysis and published solutions
is small if a sufficient number of elements and load steps are used. Sources of error
include simplifications made during formulation of the stiffness matrices and force
recovery procedures (as discussed in Chapter 2), and comparison of analysis which use

finite axial rigidity with theoretical solutions that assume infinite axial rigidity.
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Appendix C

Key Features of the Computer Implementation (CFTFiber)

This Appendix includes a brief description of the features of the software
implementation of the program CFTFiber for the materially and geometrically nonlinear
finite element formulation presented in this work. A sample input file is also presented in
Table C.1.

The program input file is divided into a number of sections which may be sorted
in any order. Each section begins with a section header which is initiated with an asterisk
().

The program requires the input of the global nodes and nodal restraints. If 18
DOF CFT finite elements are used, the program assumes that the concrete is free to
translate at an end that is either free or fixed against translation. In order to restrain the
slip between the steel and concrete at a structural node, a separate section is included in
the input file under the heading *B_SLIP RESTRAINTS. In this section, the global
nodes which are to have slip resfrained are specified, and the global direction of restraint
is input for each of these nodes.

The input file also contains a listing of cross sections used in the meshing, and
any number of cross sections can be input under the headings *B_CFT XS for CFT cross
sections, and *B_STL_XS for steel cross sections. The cross sections do not all have to
be used, but will require some dynamic storage space in the computer. The program

accesses the AISC database of manufactured structural shapes, so that the user need only
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input a section designation, e.g., W14x53, and the section properties are automatically
input. In addition to the section designation, the material properties of the section are
required. These include material strength, elastic modulus, and plasticity information.
For the CFT cross sections, the bond strength and initial slip stiffness are also specified
for each cross-section. The material parameter input line is material model specific. The
current computer implementation includes the Shen steel model as discussed in Chapter
4, and also includes the Prager model (Prager, 1956), a single surface plasticity model
which includes linear kinematic hardening. This model is more computationally efficient
than the Shen steel model, and may be used when a lower degree of accuracy is
acceptable. The final line for each cross-section is the element discretization used for the
fiber element mesh. For a CFT cross-section, this line contains the discretization for the
steel tube and the concrete core as shown in Fig. C.1. The inside corner radius for the
tube is assumed to be equal to the wall thickness (AISC, 1994). For a steel wide-flange
cross-section, the fillets are included in the discretization, with each fillet composing a
single fiber, and the webs and flanges are discretized as shown in Fig. C.1. The listing of
cross sections allows the same type of cross-section to be discretized in a number of

ways.

Figure C.1: Fiber Element Discretization
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The elements are then input under the heading *B_CFT_ELS and *B_STL_ELS.
The element's local x-axis is parallel to its centroidal axis, starting at the i-end. The
element definition requires a web vector to be defined in the global coordinate system.
For wide-flange beams, this vector is aligned with the element web, perpendicular to the
centroidal axis of the member. For a CFT element, the web of the member is assumed to
be the longer of the cross-sectional dimensions (for a rectangular cross-section), and the
web vector 1s aligned with the web, perpendicular to the centroidal axis. For both CFT
and wide-flange elements, this web vector is considered to be at the i-end of the member,
and it establishes the direction of the element's local y-axis. The local element z-axis is
considered to be perpendicular to the x and y axes. The element definition also includes
the cross-section number from the *B_CFT XS or B_STL_XS section.

The sections *C_JT_LOAD and *C_LOAD_HIST define the nodal loads and the
load history for the structure, respectively. The nodal loads are defined in the global
coordinate system, and are always assumed to be applied to the steel portion of the
element. The nodal loads are assigned to a specific load history. *C LOAD_HIST
contains the time step, the total time, and the fraction of each load history to be applied at
each global time step.

The final section, *C_FLAGS, contains flags which activate or deactivate certain
aspects of the program. For example, this section tells the program whether to use the

Shen steel model or the Prager steel model for the CFT elements and the steel elements.

200




Table C.1: Sample Input File for CFTFIBER

#2-D portal frame w/ CFT beam-columns (fixed at the base) and steel beam

#*********

*C_START *
#*********

#*******
*C_JTS *
#*******
#Input of the joint coordinates (global structural coordinates)
#Format:

# Joint number, x coordinate, y coordinate, 2z coordinate {(inches)

#Notes:

# 1) This 2D portal frame is input in global (x, z) coords as recommended
# in Fig. 1.

1 0.0 0.0 0.0

2 0.0 0.0 100.0

3 100.0 0.0 100.0

4 100.0 0.0 0.0

#*********
*C_JT_RF *
#*********

#List of joint restraints ( 1 = free, 0 = restrained )

#Format:

# Joint Number, 6 Joint DOFs (XT, YT, ZT, XR, YR, ZR -- See Fig. 2)
#Notes:

# 1) Joints with all DOFs free may be omitted (i.e., joints 2 and 3 below)
# 2) Joints which have 18 DOF CFT elements framing in are assigned 9 DOFs,
# but the final 3 DOFs are not assigned any restraints. If you restrain
# the shear DOFs of an element, you may assume that the concrete shear
# is automatically restrained also. If you restrain the axial DOF,

# YOU ARE NOT restraining the concrete axial deformation. To restrain
# the concrete axially, you must assign slip restraints in the section
# *B_SLIP_RESTRAINTS below.

1000000

2111111

3111111

4 000000

#Alternately, the joint restraints may be entered as:
#1 0 0 0 00O
#4 0 0 0 0 0 O
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#*******************

*B_SLIP RESTRAINTS *

#*******************

#Joints and global directions for joints with slip prevented
#Format:

# Joint Number, GLOBAL Restraint Direction (X, ¥, 2)

#Notes:

# 1) If the global flag for CFTs is set to no slip, this section must
# not appear!!! (See C_FLAGS section)

# 2) The joint number should correspond with a joint from the *C_JT

# section above. 1In addition, the joint should be one which has

# 18 DOF CFT elements framing in.

# 3) The restraint should be in global space, and should be a unit vector
# with three components which is aligned with the CFT element axis.
# 4) These restraints should be used if you are modelling a through-

# connection, a joint in which the CFT geometry changes, a joint at
# which mechanical shear connectors are used, a joint at which CFTs
# frame in from different directions, a column base, or the top of
# a column where a cover plate is used.

10.0 0.01.0

2 0.0 0.0 1.0

3 0.0 0.0 1.0

4 0.0 0.0 1.0

#**********

*B CFT_XS *
#**********
#CFT cross-sections (all data must be in kips and inches)
#Choose either user input format or AISC rectangular tube format
#
#User input format (4 lines per element):
line 1: tube depth, tube width, tube thickness, As, Js, Iy of tube,
Iz of tube
line 2: Steel parameters
* DEPENDS ON STEEL MODEL USED!!! See ALSO *C_FLAGS SECTION
- i1f PRAGER model is used: Fy, Fu, Es, Poisson's ratio, Esh,
Fy in corners, Fu in corners, Esh in Corners.
You may omit the last three parameters if you want the same
Fy, Fu, and Esh in the cornerg as in the rest of the tube.
- if SHEN model is used: Fy, Fu, Es, Poisson's ratio, Plastic
strain at the end of the yield plateau (use 0.017 if you don't
know what this means), Yield in cyclic loading (use 0.191 if
you don't know what this means), Initial value of bounding
modulus (Similar to Esh, use 260.0 as default),
initial radius of the plastic strain space surface (0.0004
is the default value for the flats) -- If the corners are
different than the flats, input the following 4 values:
Fy in corners, Fu in corners, Esh in Corners.
initial radius of the plastic strain space surface in the
corners (0.0006 is the default value for the corners)
You may omit the last three parameters if you want the same
Fy, Fu, and Esh in the corners as in the rest of the tube.
The Fy, Fu, Esh value is linearly interpolated.
line 3: Concrete and Slip parameters (2-6 numbers on one line)
fc', Slip stiffness at end i, Slip stiffness at end j,
bond strength, initial concrete elastic modulus, strain
at peak concrete compressive strength.
The last 4 parameters may be omitted if default values are
desired. Use slip stiffness of 1450, bond strength of 0.79
if you don't know what this means. If only 2 values are
read, the program uses the default values and assumes Kslip
at the i-end = Kslip at the j-end.
line 4: Discretization grid (10 numbers on one line)
# of fibers in steel flange through-thickness direction,
# of fibers in steel flange in width-direction,
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# of fibers in steel web in depth-direction,
# of fibers in steel web through-thickness direction.
(The next four discretization parameters refer to the concrete
which lies within "t" [the corner radius dimension] of the
steel tube walls):
# of fibers along flange through-thickness direction,
# of fibers along flange in width-direction,
# of fibers along web through-thickness direction.
# of fibers along web in depth-direction,
(The next two discretization parameters refer to the concrete
which lies inside core of the section. This region has
dimensions (depth - 4*thickness) x (width - 4*thickness) )
# of fibers in core in depth-direction,
# of fibers in core in width-direction.
AISC W-setion format (4 lines per element):
line 1: section designation (e.g., TS10x10x1/4)
lines 2, 3, and 4: Same as User Input format

o 3k k3

3= ok e o 3k e %k R S ok 3k R s e sk ok i B d 3k ke

Notes:
1) Section designation must begin with 'TS' and contain no spaces
2) Input for each element may be separated by a blank line
3) The CFT cross-sections are automatically numbered beginning
with 1 as the first cross-section listed, and continuing in
ascending order as listed in this section.
4) The cross-sections are automatically number in the order that
they appear.
5) The sample input line below uses the Prager steel model.
TS6x6x1/4
36 58 29000 0.3 300
5.0 1000.0

24241414424

#***********
*B CFT ELS *
#***********
#CFT elements
#

# input format (1 line per element):

# line 1: CFT element number, i-end, j-end, cross-section number,

# i-end web wvector (x, y, z)

#

#

#Notes:

# 1) I-end unit vector is the orientation of the major axis of the element
# in GLOBAL coords (based on the orientation in *C_JTS)

# 3) Input for each element may be separated by a blank line

# 4} The CFT elements should be numbered beginning with 1, even 1f there
# are steel elements, which must be numbered beginning with 1 also.
1121211.00.00.0

23411.00.00.0
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#**********
*B_STL XS *
#**********
#Steel cross sections
#Choose either user input format or AISC W-section format
#
#User input format (3 lines per cross-section):
line 1: depth, flange width, flange thickness,
web thickness, fillet radius, area, Iy, Iz, J
line 2: STeel Parameters:

DEPENDS ON STEEL MODEL USED!!! SEE ALSO *C_FLAGS SECTION

If PRAGER Steel Model is Used:

- Fy, Fu, FR (residual stress), Elastic modulus, strain hardening

modulus, Poisson's ratio.

If SHEN Steel Model is Used:

- Fy, Fu, Fr (residual stress), Elastic modulus, Poisson's ratio,
plastic strain at the end of the yield plateau (use 0.017 if you
don't know what this means), Yield in cyclic loading (use 0.191 if
you don't know what this means), Esh (use 260.0 as default),
initial radius of the plastic strain surface (use 0.0 if you
don't know what this means). The last parameter may be omitted.

line 3: # of fibexs in flange in width-direction,
# of fibers in flange through-thickness direction,
# of fibers in web in depth-direction,
# of fibers in web through-thickness direction.

AISC W-setion format (2 lines per element):
line 1: section designation (e.g., W14x53)
lines 2 and 3: Same as user input format

Notes:
1) Section designation must begin with 'W' and contain no spaces
2) Input for each element may be separated by a blank line
3) The steel cross-sections are automatically numbered beginning
with 1 as the first cross-section listed, and continuing in
ascending order as listed in this section.

HeoH H H o 3E e He R 3R ok Sk 3 3k 3k 3k 3k ok i o o HE HE e o o R 3 S 3

W10x45
36 58 0.0 29000 300 0.3
4 2 10 2

#***********

*B_STL_ELS *

#***********

#Steel elements

#Choose either user input format or AISC W-section format

#

#User input format (1 line per element):

# line 1: Steel elem #, i-end, j-end, steel cross-section number,

# i-end vector coords (x, vy, 2)

#

#Notes:

# 1) i-end vector is the vector denoting the orientation of the major
# axis of the element at the i-end of the member in GLOBAL coords.
# 2) Input for each element may be separated by a blank line

# 3) The steel elements should be numbered beginning with 1, even if there
# are CFT elements, which must be numbered beginning with 1 also.

12310.00.01.0
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#************
*C_JT_LOADS *
#************
#Joint loads

#Format:

# Jt #, Joint DOF, Load (kips), Load history (LH) number

#

#Notes:

# 1) Joint DOF numbering is based upon the global structural axes. For
# the axes shown at the top of this file: DOF 1 = x transl,

# 2 =y transl, 3 = z transl, 4 = x rot, 5 = y rot, and 6 = z rot
# 2) Joint DOFs may be assigned any LH number. To apply two or three

# loads to the same jt. with different LH's, note the following:
# * By specifying a LH greater than 2, a third load may be assigned

# to a given joint direction. However, LH's greater than
# 2 are NOT mutually exclusive, i.e., the program stores
# at most three LHs, so if the user assigns LH 3 as a

# jt dof load and then applies a load to the same dof

# with a LH of 4, the LH 4 load will overwrite the LH 3

# load.

# 3) This section is not required if there are no joint loads (i.e., all
# loads are either distributed element loads or accelerogram loads) .

2 3 -30.0 1
3 3 -30.0 1
213.02

#************

*C_LOADHIST *
ok o e e ok ek ok ok

#Load history: Part I is required for all analyses.

# Part II is required for all analyses except those with only
# acclerogram loading (i.e., no joint loads).

#

#PART I

rommmmm

#Format:

# Number of LHs, Time step, Total time, Output every __ steps
#Notes:

# 1) The input shown below requests 10 time (load) steps

# 2) Output for this analysis is printed after every 2 load steps

2 0.11.02

#PART II

#For each load history (1 to number of LHs):

# Line 1: Load history (LH) number, number of LH points

# Successive Lines:

# Individual LH points (50 max) -- (load fraction, time )

R R
oo
- o
oo

1.0
-1.0
2.0
-2.0
0.0

HFoOQooOoCoN
o WA NOOA
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#************

*C_NEW-RAPH *

#************

#Newton-Raphson parameters

#Format:

# Max # of iterations per load step

#

#Notes:

# 1) To turn off Newton-Raphson and run a simple step analysis, enter 1

10

#********

*C_TOLS *

#********

#Tolerances used throughout the program

#

#Notes:

# 1) The values given below are recommended for general analyses.

#Loading and bounding surface tolerance:
0.001

#Newton-Raphson convergence tolerance (work-based):
0.001

#Eigen analysis inverse iteration.convergence (use 10™(-8) for s-digit accuracy) i
0.000001

#*********

*C_FLAGS *

#********* ;
#Notes: i
# 1) The flags must appear in the order shown below since they are read

# sequentially by the program.

# 2) Default values are shown.

# 3) There are a total of 14 flags -- make sure all are present.

#**%* SPECIAL PLOTFILE REQUEST ***%

#Enter code number for specified 'cftmacro.plot' output

#Notes: Enter 0 if you do not know what this means j
0

#r**k* ANALYSIS OPTION FLAGS ***%

o e mm e e e
#Enter the type of analysis--(S)tatic, (D)ynamic, or (E)igen:

#Notes:

# 1) For an Eigen-analysis, both dynamic and eigen analyses are performed.
# 2) Only static analysis is allowed at the present time.

S

#2nd-Order analysis (i.e., include geometric nonlinearities)? (Enter Y, YL, N)

#Notes:

# 1) 'Y' (default) requests use of both the lower order geometric

# stiffness matrix and the higher order matrix, the latter of which

# includes terms accounting for geom nonlinear effects due to moments.
# 2) 'YL' requests use of only the lower order matrix (axial force terms).
# 3) 'N' requests a lst-order elastic or inelastic analysis

Y

#Inelastic analysis (i.e., include material nonlinearities)? (Y or N)
Y
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#***% INPUT/OUTPUT FLAGS **%%

#Echo selected input parameters (member and joint info) to screen? (Y or N)
N

#Print only displacements and forces to 'cftmacro.out'? (Y or N)
N

#Output maximum and minimum forces and displacements? (Y or N)

#Notes:

1) These values are printed to 'cftmacro.max*.

2) This option is primarily for dynamic or cyclic static analyses.
3) This flag is cuirrently not used.

Lo L

fr*r%x GLOBAL UNITS FLAG ***+*

#Use Imperial (Kips and inches) or SI(KN and mm) in input and calculations?
#IMP or SI (IMP is default).
IMP

$#*%k* MAXTMUM FRACTION OF ecc ALLOWED IN EACH LOAD INCREMENT **

# This flag helps the concrete plasticity model function properly. The concrete
# plasticity function will sub-increment the strain increment given the maximum
# fraction of ec' allowed below (default = 0.1)

0.1

#**** USE CFT ELEMENTS WITH INTERLAYER SLIP? (DEFAULT = YES) #***%

# If there is no slip allowed, the section B_SLIP_RESTRAINTS must not be used!
# The no slip case is currently unavailable.

YES

#***%* USE CFT PASSIVE CONFINEMENT MODEL? (DEFAULT = NO) #*%%
# The confinement model is currently unfinish. Kepp this flag set to NO
NO

f***+% WHAT STEEL MATERIAL MODEL TO USE FOR CFTs? (DEFAULT = PRAGER) **#*%*
# SHEN OR PRAGER

# Ensure that the steel section in B _CFT XS corresponds to this flag
PRAGER

fr**% WHAT STEEL MATERIAL MODEL TO USE FOR STEEL BEAMS? (DEFAULT = PRAGER) **¥%%*
# SHEN OR PRAGER

# Ensure that the steel section in B_STL XS corresponds to this flag

PRAGER

#*******

*C_END *
#*******
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Appendix D

List of Symbols

a = dimension of the constant moment region for a flexural test

T4 = area of material m at C1

B = tube width measurement

1 Gy = material constitutive tensor at C1

d = differentiation

{Ad™}  =incremental natural element deformation vector

D = tube depth measurement

Dy, D, = distance measurements used for subassembly drift rotation measurement
e = eccentricity of applied axial force

e = distance of computed node location from theoretical location

e; = vector used in the penalty function formulation containing the global

constraint equation

2€; = engineering strain tensor in C2
1€ = linear Green-Lagrange strain terms in C1
Ae,, = incremental strain at a point measured in the direction of the element

centroid

Ae,,, Ae,, =incremental shear strains at a point
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Ae’ = incremental elongation between the i-end node and the midpoint node of

m

the material m

Ae™ = incremental elongation between the i-end node and the j-end node of the
material m
Ae™ = incremental displacement of the concrete i-end node with respect to the

corotational axes (which occurs due to slip)

'E" = uniaxial tangent modulus of material m at C1

E, = strain hardening modulus of steel

'EA” = axial rigidity at the i-end of the element in material m at C1

'EI i = flexural rigidity about the y-axis at the i-end of the element in material m at
Cl

'EI" = flexural rigidity about the z-axis at the i-end of the element in material m at |
c1

'EI i = modulus times second moment of the area about the y and z-axes at the i-

end of the element in material m at C1

IEQ;'; = modulus times first moment of the area about the y-axis at the i-end of the
element in material m at C1

'EQ" = modulus times first moment of the area about the z-axis at the i-end of the

zi

element in material m at C1

Svond = bond strength of the slip interface
I, = concrete compressive strength
f = steel residual stress
Ju = steel ultimate strength
f, = steel yield strength
1 = body forces in C2
{Af™} = incremental natural element force vector
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F = concrete constitutive model parameter which accounts for the multiaxial

stress state of the concrete

E = generic force resultant or rigidity term at the i-end of a member
{F,} = vector of midpoint forces

H = applied horizontal load

H = plastic modulus of concrete

i = simplification variable equal to x/L

I = steel-concrete interface at C2

k = stiffness per unit area of the slip interface

k = tangent stiffness of the slip interface per unit length

kg = initial stiffness of the slip interface per unit length

K = damage parameter used for the concrete constitutive model

Ko = maximum value of the damage parameter K achieved in the loading history
[K"1] = condensed natural element stiffness matrix

[K°] = local element stiffness matrix, including geometric nonlinear terms
[K°] = global tangent stiffness matrix

[K™] = natural element stiffness matrix

[K'] = natural element elastic stiffness matrix

[K ;’f’] = natural element low-order geometric stiffness matrix

[K ;’f’ 1*  =natural element low-order geometric stiffness matrix including the end-of-

step axial force (used in force recovery)

[K;’;"] = natural element high-order geometric stiffness matrix
L = element length

L, = length of the steel-concrete interface

m = shear span for a flexural test
M = applied bending moment
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M, = ultimate moment a member can sustain

'M w = internal bending moment about the y-axis at the i-end of the element in
material m at C1
‘M " = internal bending moment about the z-axis at the i-end of the element in

material m at C1

7 = unit vector

N = unit vector at C1

<N,> = shape function for the term d in vector form

p = point inside the element volume

P = applied axial force

P, = axial force at yield

P. = Euler buckling load

P .. = maximum observed axial load for a column test

/p” = difference in axial force in material m between end j and end 1
'p” = internal axial force at the i-end of the element in material m at C1
0 = applied shearing force

AR = incremental applied load vector for an element

{AR} = vector of global incremental applied loads

{rb} = vector form of [RB] containing deformation terms

[RB] = matrix containing the rigid body geometric nonlinear stiffness terms

(external stiffness)

s = surface of the element in configuration C2

12S,.j = second Poila-Kirchoff stress tensor (PK2) measured at C2 with respect to
| Cl

t = tube thickness

’t, = surface tractions in configuration C2

T = torque
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U, = element deformations measured with respect to configuration C2

Au) = incremental deformation of the element centroid in the corotational x-axis
direction for material m

Au™ = incremental deformation of any point in the element volume in the

corotational x-axis direction for the material m

{AU} = vector of global incremental displacements

(U} = right-hand side of the global constraint equation used to define penalty
functions

Av) = incremental deformation of the element centroid in the corotational y-axis

direction for material m

Av™ = incremental deformation of any point in the element volume in the

corotational y-axis direction for material m

vV = applied shear force |
vV = applied gravity load i
v = volume of the element in configuration C2

y = volume of material m at C1

Aw” = incremental deformation of the element centroid in the corotational z-axis

direction for the material m

Aw™ = incremental deformation of any point in the element volume in the

corotational z-axis direction for the material m

w = applied shearing force

X = distance measured along corotational x-axis

y = distance measured along corotational y-axis

z = distance measured along corotational z-axis

a = constant used to apply penalty functions

o = angle to the major axis at which an eccentrically applied axial load is
located
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Ao = incremental rotation of a node about the global X-axis

B = ratio of the load applied at the connections to the total applied load for a
connection test

AB = incremental rotation of a node about the global Y-axis

Ay = incremental rotation of a node about the global Z-axis

) = midpoint displacement of a flexural test

) = variational symbol referring to small perturbations from the equilibrium
state

= change over the increment C1 to C2

A = deflection of an axially loaded column

€ pinitiqq  — initial plastic strain used in the steel constitutive model

1€ = Green-Lagrange strain measured with respect to C1

g’ = steel strain

" = nonlinear Green-Lagrange strain terms

’n = stress in the slip interface at C2

0 = rotation

0 s =rigid body rotation

A, = incremental torsional rotation from the i-end node to the j-end node
AB7, = incremental rotation of the i-end node about the y-axis of the material m
AB7, = incremental rotation of the j-end node about the y-axis of the material m
AO7 = incremental rotation of the i-end node about the z-axis of the material m
AQ7 = incremental rotation of the j-end node about the z-axis of the material m
p = perimeter of steel-concrete interface

to” = uniaxial stress in material m at C1

2 T, = Cauchy stress tensor measured in configuration C2

[Q]"**" = natural-to-local transformation matrix
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2V
Ay

1
Coi

1
Ci

ICm
zzi

<>

{3

= deformation of the slip interface measured with respect to C2 (scalar)

= incremental deformation in the slip layer

= internal second moment of the stress about the y-axis at the i-end of the
element in material m at C1

= internal second moment of the stress about the y and z-axes at the i-end of
the element in material m at C1

= internal second moment of the stress about the z-axis at the i-end of the
element in material m at C1

= row vector

= column vector

= differentiation with respect to x
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